1 code implementation • ACL 2022 • Jean-Benoit Delbrouck, Khaled Saab, Maya Varma, Sabri Eyuboglu, Pierre Chambon, Jared Dunnmon, Juan Zambrano, Akshay Chaudhari, Curtis Langlotz
There is a growing need to model interactions between data modalities (e. g., vision, language) — both to improve AI predictions on existing tasks and to enable new applications.
no code implementations • 23 Nov 2022 • Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier van der Sluijs, Małgorzata Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P. Langlotz, Akshay Chaudhari
We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language.
1 code implementation • 21 Oct 2022 • Jean-Benoit Delbrouck, Pierre Chambon, Christian Bluethgen, Emily Tsai, Omar Almusa, Curtis P. Langlotz
To overcome this limitation, we propose a new method, the RadGraph reward, to further improve the factual completeness and correctness of generated radiology reports.
no code implementations • 9 Oct 2022 • Pierre Chambon, Christian Bluethgen, Curtis P. Langlotz, Akshay Chaudhari
Multi-modal foundation models are typically trained on millions of pairs of natural images and text captions, frequently obtained through web-crawling approaches.
no code implementations • 28 Jun 2021 • Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven QH Truong, Du Nguyen Duong, Tan Bui, Pierre Chambon, Yuhao Zhang, Matthew P. Lungren, Andrew Y. Ng, Curtis P. Langlotz, Pranav Rajpurkar
We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14, 579 entities and 10, 889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets.