Search Results for author: Pierre Dognin

Found 19 papers, 5 papers with code

Programming Refusal with Conditional Activation Steering

1 code implementation6 Sep 2024 Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Manish Nagireddy, Amit Dhurandhar

In this paper, we propose Conditional Activation Steering (CAST), which analyzes LLM activation patterns during inference to selectively apply or withhold activation steering based on the input context.

Value Alignment from Unstructured Text

no code implementations19 Aug 2024 Inkit Padhi, Karthikeyan Natesan Ramamurthy, Prasanna Sattigeri, Manish Nagireddy, Pierre Dognin, Kush R. Varshney

Aligning large language models (LLMs) to value systems has emerged as a significant area of research within the fields of AI and NLP.

Synthetic Data Generation

Knowledge Graph Generation From Text

1 code implementation18 Nov 2022 Igor Melnyk, Pierre Dognin, Payel Das

In this work we propose a novel end-to-end multi-stage Knowledge Graph (KG) generation system from textual inputs, separating the overall process into two stages.

Graph Generation Joint Entity and Relation Extraction +1

Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge

1 code implementation21 Dec 2020 Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young, Brian Belgodere

Image captioning has recently demonstrated impressive progress largely owing to the introduction of neural network algorithms trained on curated dataset like MS-COCO.

Image Captioning Navigate

Alleviating Noisy Data in Image Captioning with Cooperative Distillation

no code implementations21 Dec 2020 Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff

Image captioning systems have made substantial progress, largely due to the availability of curated datasets like Microsoft COCO or Vizwiz that have accurate descriptions of their corresponding images.

Image Captioning

Tabular Transformers for Modeling Multivariate Time Series

1 code implementation3 Nov 2020 Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross, Ravi Nair, Erik Altman

This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences.

Fraud Detection Synthetic Data Generation +2

Learning Implicit Text Generation via Feature Matching

no code implementations ACL 2020 Inkit Padhi, Pierre Dognin, Ke Bai, Cicero Nogueira dos santos, Vijil Chenthamarakshan, Youssef Mroueh, Payel Das

Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks.

Conditional Text Generation Style Transfer +2

Surrogate-Based Constrained Langevin Sampling With Applications to Optimal Material Configuration Design

no code implementations25 Sep 2019 Thanh V Nguyen, Youssef Mroueh, Samuel C. Hoffman, Payel Das, Pierre Dognin, Giuseppe Romano, Chinmay Hegde

We consider the problem of generating configurations that satisfy physical constraints for optimal material nano-pattern design, where multiple (and often conflicting) properties need to be simultaneously satisfied.

Adversarial Semantic Alignment for Improved Image Captions

no code implementations CVPR 2019 Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jerret Ross, Tom Sercu

When evaluated on OOC and MS-COCO benchmarks, we show that SCST-based training has a strong performance in both semantic score and human evaluation, promising to be a valuable new approach for efficient discrete GAN training.

Image Captioning

Generative Feature Matching Networks

no code implementations ICLR 2019 Cicero Nogueira dos Santos, Inkit Padhi, Pierre Dognin, Youssef Mroueh

We propose a non-adversarial feature matching-based approach to train generative models.

Learning Implicit Generative Models by Matching Perceptual Features

no code implementations ICCV 2019 Cicero Nogueira dos Santos, Youssef Mroueh, Inkit Padhi, Pierre Dognin

Perceptual features (PFs) have been used with great success in tasks such as transfer learning, style transfer, and super-resolution.

Style Transfer Super-Resolution +1

Improved Adversarial Image Captioning

no code implementations ICLR Workshop DeepGenStruct 2019 Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Tom Sercu

In this paper we study image captioning as a conditional GAN training, proposing both a context-aware LSTM captioner and co-attentive discriminator, which enforces semantic alignment between images and captions.

Image Captioning

Wasserstein Barycenter Model Ensembling

1 code implementation13 Feb 2019 Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jerret Ross, Cicero dos Santos, Tom Sercu

In this paper we propose to perform model ensembling in a multiclass or a multilabel learning setting using Wasserstein (W.) barycenters.

Attribute General Classification +2

Cannot find the paper you are looking for? You can Submit a new open access paper.