no code implementations • 23 Apr 2024 • Yihao Li, Mostafa El Habib Daho, Pierre-Henri Conze, Rachid Zeghlache, Hugo Le Boité, Ramin Tadayoni, Béatrice Cochener, Mathieu Lamard, Gwenolé Quellec
Multimodal medical imaging plays a pivotal role in clinical diagnosis and research, as it combines information from various imaging modalities to provide a more comprehensive understanding of the underlying pathology.
no code implementations • 10 Apr 2024 • Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Alireza Rezaei, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard
This work proposes a novel framework for analyzing disease progression using time-aware neural ordinary differential equations (NODE).
no code implementations • 2 Apr 2024 • Pierre Rougé, Pierre-Henri Conze, Nicolas Passat, Odyssée Merveille
Based on these experiments, we provide guidelines for the annotation and training of cerebrovascular segmentation models.
no code implementations • 24 Mar 2024 • Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Alireza Rezaei, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard
Our results demonstrated the relevancy of both time-aware position embedding and masking strategies based on disease progression knowledge.
no code implementations • 10 Jan 2024 • Mostafa El Habib Daho, Yihao Li, Rachid Zeghlache, Hugo Le Boité, Pierre Deman, Laurent Borderie, Hugang Ren, Niranchana Mannivanan, Capucine Lepicard, Béatrice Cochener, Aude Couturier, Ramin Tadayoni, Pierre-Henri Conze, Mathieu Lamard, Gwenolé Quellec
A straightforward solution to this task is a 3-D neural network classifier.
1 code implementation • 8 Jan 2024 • Yihao Li, Philippe Zhang, Yubo Tan, Jing Zhang, Zhihan Wang, Weili Jiang, Pierre-Henri Conze, Mathieu Lamard, Gwenolé Quellec, Mostafa El Habib Daho
As for Task 3 (prediction of spherical equivalent), we have designed a deep regression model based on the data distribution of the dataset and employed an integration strategy to enhance the model's prediction accuracy.
no code implementations • 16 Oct 2023 • Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Hugo Le boite, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard
Our framework, Longitudinal Mixing Training (LMT), can be considered both as a regularizer and as a pretext task that encodes the disease progression in the latent space.
no code implementations • 16 Oct 2023 • Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard
In recent years, a novel class of algorithms has emerged with the goal of learning disease progression in a self-supervised manner, using either pairs of consecutive images or time series of images.
no code implementations • 3 Oct 2023 • Mostafa El Habib Daho, Yihao Li, Rachid Zeghlache, Yapo Cedric Atse, Hugo Le Boité, Sophie Bonnin, Deborah Cosette, Pierre Deman, Laurent Borderie, Capucine Lepicard, Ramin Tadayoni, Béatrice Cochener, Pierre-Henri Conze, Mathieu Lamard, Gwenolé Quellec
Diabetic Retinopathy (DR), a prevalent and severe complication of diabetes, affects millions of individuals globally, underscoring the need for accurate and timely diagnosis.
1 code implementation • 29 Jul 2023 • Hicham Messaoudi, Ahror Belaid, Douraied Ben Salem, Pierre-Henri Conze
In this paper, we introduce an efficient way to transfer the efficiency of a 2D classification network trained on natural images to 2D, 3D uni- and multi-modal medical image segmentation applications.
1 code implementation • 4 Apr 2023 • Guillaume Sallé, Pierre-Henri Conze, Julien Bert, Nicolas Boussion, Dimitris Visvikis, Vincent Jaouen
\textit{Objectives}: Data scarcity and domain shifts lead to biased training sets that do not accurately represent deployment conditions.
1 code implementation • 21 Nov 2022 • Yihao Li, Rachid Zeghlache, Ikram Brahim, Hui Xu, Yubo Tan, Pierre-Henri Conze, Mathieu Lamard, Gwenolé Quellec, Mostafa El Habib Daho
Diabetic Retinopathy (DR) is a severe complication of diabetes that can cause blindness.
no code implementations • 2 Sep 2022 • Yihao Li, Mostafa El Habib Daho, Pierre-Henri Conze, Hassan Al Hajj, Sophie Bonnin, Hugang Ren, Niranchana Manivannan, Stephanie Magazzeni, Ramin Tadayoni, Béatrice Cochener, Mathieu Lamard, Gwenolé Quellec
In recent years, multiple imaging techniques have been used in clinical practice for retinal analysis: 2D fundus photographs, 3D optical coherence tomography (OCT) and 3D OCT angiography, etc.
no code implementations • 2 Sep 2022 • Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Gwenolé Quellec, Mathieu Lamard
Longitudinal imaging is able to capture both static anatomical structures and dynamic changes in disease progression towards earlier and better patient-specific pathology management.
no code implementations • 2 Sep 2022 • Ikram Brahim, Mathieu Lamard, Anas-Alexis Benyoussef, Pierre-Henri Conze, Béatrice Cochener, Divi Cornec, Gwenolé Quellec
With a prevalence of 5 to 50%, Dry Eye Disease (DED) is one of the leading reasons for ophthalmologist consultations.
no code implementations • 27 Jul 2022 • Arnaud Boutillon, Pierre-Henri Conze, Christelle Pons, Valérie Burdin, Bhushan Borotikar
Clinical diagnosis of the pediatric musculoskeletal system relies on the analysis of medical imaging examinations.
no code implementations • 30 Nov 2021 • Vincent Jaouen, Pierre-Henri Conze, Guillaume Dardenne, Julien Bert, Dimitris Visvikis
In image registration, many efforts have been devoted to the development of alternatives to the popular normalized mutual information criterion.
no code implementations • 21 May 2021 • Arnaud Boutillon, Pierre-Henri Conze, Christelle Pons, Valérie Burdin, Bhushan Borotikar
Automatic segmentation of magnetic resonance (MR) images is crucial for morphological evaluation of the pediatric musculoskeletal system in clinical practice.
no code implementations • 25 Jan 2021 • Arnaud Boutillon, Bhushan Borotikar, Christelle Pons, Valérie Burdin, Pierre-Henri Conze
Automatic segmentation of the musculoskeletal system in pediatric magnetic resonance (MR) images is a challenging but crucial task for morphological evaluation in clinical practice.
no code implementations • 22 Nov 2020 • Hicham Messaoudi, Ahror Belaid, Mohamed Lamine Allaoui, Ahcene Zetout, Mohand Said Allili, Souhil Tliba, Douraied Ben Salem, Pierre-Henri Conze
As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network.
no code implementations • 15 Sep 2020 • Arnaud Boutillon, Bhushan Borotikar, Valérie Burdin, Pierre-Henri Conze
Morphological and diagnostic evaluation of pediatric musculoskeletal system is crucial in clinical practice.
no code implementations • 13 Aug 2020 • Gwenolé Quellec, Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, Béatrice Cochener
In recent years, Artificial Intelligence (AI) has proven its relevance for medical decision support.
no code implementations • 27 Feb 2020 • Yutong Yan, Pierre-Henri Conze, Gwenolé Quellec, Mathieu Lamard, Béatrice Cochener, Gouenou Coatrieux
In this work, we present a two-stage multi-scale pipeline that provides accurate mass contours from high-resolution full mammograms.
no code implementations • 26 Jan 2020 • Pierre-Henri Conze, Ali Emre Kavur, Emilie Cornec-Le Gall, Naciye Sinem Gezer, Yannick Le Meur, M. Alper Selver, François Rousseau
In this context, we address fully-automated multi-organ segmentation from abdominal CT and MR images using deep learning.
1 code implementation • 17 Jan 2020 • A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde BOZDAĞI AKAR, Gözde Ünal, Oğuz Dicle, M. Alper Selver
The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0. 98 $\pm$ 0. 00 / 0. 95 $\pm$ 0. 01) but the best MSSD performance remain limited (21. 89 $\pm$ 13. 94 / 20. 85 $\pm$ 10. 63 mm).
no code implementations • 20 Oct 2019 • Arnaud Boutillon, Bhushan Borotikar, Valérie Burdin, Pierre-Henri Conze
This paper proposes an automatic method for scapula bone segmentation from Magnetic Resonance (MR) images using deep learning.
no code implementations • 22 Jul 2019 • Gwenolé Quellec, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, Béatrice Cochener
This paper presents a new few-shot learning framework that extends convolutional neural networks (CNNs), trained for frequent conditions, with an unsupervised probabilistic model for rare condition detection.
no code implementations • 25 Feb 2019 • Pierre-Henri Conze, Florian Tilquin, Mathieu Lamard, Fabrice Heitz, Gwenolé Quellec
Finding correspondences between structural entities decomposing images is of high interest for computer vision applications.
no code implementations • 6 Jan 2019 • Pierre-Henri Conze, Sylvain Brochard, Valérie Burdin, Frances T. Sheehan, Christelle Pons
Methodological aspects are evaluated in a leave-one-out fashion on a dataset of 24 shoulder examinations from patients with obstetrical brachial plexus palsy and focus on 4 different muscles including deltoid as well as infraspinatus, supraspinatus and subscapularis from the rotator cuff.
no code implementations • 17 Mar 2018 • Mahaman Sani Chaibou, Pierre-Henri Conze, Karim Kalti, Basel Solaiman, Mohamed Ali Mahjoub
From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions.
no code implementations • 4 Oct 2017 • Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Béatrice Cochener, Gwenolé Quellec
Tool usage is monitored in videos recorded either through a microscope (cataract surgery) or an endoscope (cholecystectomy).