Search Results for author: Ping Cai

Found 3 papers, 2 papers with code

Distributional Discrepancy: A Metric for Unconditional Text Generation

1 code implementation4 May 2020 Ping Cai, Xingyuan Chen, Peng Jin, Hongjun Wang, Tianrui Li

The purpose of unconditional text generation is to train a model with real sentences, then generate novel sentences of the same quality and diversity as the training data.

Language Modelling Text Generation

Adding A Filter Based on The Discriminator to Improve Unconditional Text Generation

1 code implementation5 Apr 2020 Xingyuan Chen, Ping Cai, Peng Jin, Hongjun Wang, Xin-yu Dai, Jia-Jun Chen

To alleviate the exposure bias, generative adversarial networks (GAN) use the discriminator to update the generator's parameters directly, but they fail by being evaluated precisely.

Language Modelling Text Generation

The Detection of Distributional Discrepancy for Text Generation

no code implementations28 Sep 2019 Xingyuan Chen, Ping Cai, Peng Jin, Haokun Du, Hongjun Wang, Xingyu Dai, Jia-Jun Chen

In this paper, we theoretically propose two metric functions to measure the distributional difference between real text and generated text.

Language Modelling Text Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.