no code implementations • 12 Mar 2025 • Haixing Gong, Hui Zou, Xingzhou Liang, Shiyuan Meng, Pinlong Cai, Xingcheng Xu, Jingjing Qu
In the rapidly evolving field of artificial intelligence (AI), mapping innovation patterns and understanding effective technology transfer from research to applications are essential for economic growth.
no code implementations • 19 Jul 2024 • Kemou Jiang, Xuan Cai, Zhiyong Cui, Aoyong Li, Yilong Ren, Haiyang Yu, Hao Yang, Daocheng Fu, Licheng Wen, Pinlong Cai
To broaden the horizons of knowledge-driven strategies and bolster the generalization capabilities of autonomous agents, we propose the KoMA framework consisting of multi-agent interaction, multi-step planning, shared-memory, and ranking-based reflection modules to enhance multi-agents' decision-making in complex driving scenarios.
2 code implementations • 17 Jun 2024 • Renqiu Xia, Song Mao, Xiangchao Yan, Hongbin Zhou, Bo Zhang, Haoyang Peng, Jiahao Pi, Daocheng Fu, Wenjie Wu, Hancheng Ye, Shiyang Feng, Chao Xu, Conghui He, Pinlong Cai, Min Dou, Botian Shi, Sheng Zhou, Yongwei Wang, Bin Wang, Junchi Yan, Fei Wu, Yu Qiao
Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data.
1 code implementation • 12 Jun 2024 • Qingyun Li, Zhe Chen, Weiyun Wang, Wenhai Wang, Shenglong Ye, Zhenjiang Jin, Guanzhou Chen, Yinan He, Zhangwei Gao, Erfei Cui, Jiashuo Yu, Hao Tian, Jiasheng Zhou, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Zhenxiang Li, Pei Chu, Yi Wang, Min Dou, Changyao Tian, Xizhou Zhu, Lewei Lu, Yushi Chen, Junjun He, Zhongying Tu, Tong Lu, Yali Wang, LiMin Wang, Dahua Lin, Yu Qiao, Botian Shi, Conghui He, Jifeng Dai
In this paper, we introduce OmniCorpus, a 10 billion-scale image-text interleaved dataset.
1 code implementation • 24 May 2024 • Jianbiao Mei, Yukai Ma, Xuemeng Yang, Licheng Wen, Xinyu Cai, Xin Li, Daocheng Fu, Bo Zhang, Pinlong Cai, Min Dou, Botian Shi, Liang He, Yong liu, Yu Qiao
Experiments also demonstrate that as the memory bank expands, the Heuristic Process with only 1. 8B parameters can inherit the knowledge from a GPT-4 powered Analytic Process and achieve continuous performance improvement.
1 code implementation • 25 Apr 2024 • Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo, Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, Wenhai Wang
Compared to both open-source and proprietary models, InternVL 1. 5 shows competitive performance, achieving state-of-the-art results in 8 of 18 benchmarks.
Ranked #6 on
Multiple-choice
on Neptune-Full
1 code implementation • 6 Feb 2024 • Guohang Yan, Jiahao Pi, Jianfei Guo, Zhaotong Luo, Min Dou, Nianchen Deng, Qiusheng Huang, Daocheng Fu, Licheng Wen, Pinlong Cai, Xing Gao, Xinyu Cai, Bo Zhang, Xuemeng Yang, Yeqi Bai, Hongbin Zhou, Botian Shi
With the development of implicit rendering technology and in-depth research on using generative models to produce data at scale, we propose OASim, an open and adaptive simulator and autonomous driving data generator based on implicit neural rendering.
no code implementations • 20 Dec 2023 • Lening Wang, Yilong Ren, Han Jiang, Pinlong Cai, Daocheng Fu, Tianqi Wang, Zhiyong Cui, Haiyang Yu, Xuesong Wang, Hanchu Zhou, Helai Huang, Yinhai Wang
For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction.
1 code implementation • 7 Dec 2023 • Xin Li, Yeqi Bai, Pinlong Cai, Licheng Wen, Daocheng Fu, Bo Zhang, Xuemeng Yang, Xinyu Cai, Tao Ma, Jianfei Guo, Xing Gao, Min Dou, Yikang Li, Botian Shi, Yong liu, Liang He, Yu Qiao
This paper explores the emerging knowledge-driven autonomous driving technologies.
2 code implementations • 6 Dec 2023 • Hongyang Li, Yang Li, Huijie Wang, Jia Zeng, Huilin Xu, Pinlong Cai, Li Chen, Junchi Yan, Feng Xu, Lu Xiong, Jingdong Wang, Futang Zhu, Chunjing Xu, Tiancai Wang, Fei Xia, Beipeng Mu, Zhihui Peng, Dahua Lin, Yu Qiao
With the continuous maturation and application of autonomous driving technology, a systematic examination of open-source autonomous driving datasets becomes instrumental in fostering the robust evolution of the industry ecosystem.
1 code implementation • 9 Nov 2023 • Licheng Wen, Xuemeng Yang, Daocheng Fu, XiaoFeng Wang, Pinlong Cai, Xin Li, Tao Ma, Yingxuan Li, Linran Xu, Dengke Shang, Zheng Zhu, Shaoyan Sun, Yeqi Bai, Xinyu Cai, Min Dou, Shuanglu Hu, Botian Shi, Yu Qiao
This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving.
2 code implementations • 28 Sep 2023 • Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min Dou, Botian Shi, Liang He, Yu Qiao
Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability.
Ranked #1 on
10-shot image generation
on FQL-Driving
1 code implementation • 13 Sep 2023 • Siyao Zhang, Daocheng Fu, Zhao Zhang, Bin Yu, Pinlong Cai
This integration yields the following key enhancements: 1) empowering ChatGPT with the capacity to view, analyze, process traffic data, and provide insightful decision support for urban transportation system management; 2) facilitating the intelligent deconstruction of broad and complex tasks and sequential utilization of traffic foundation models for their gradual completion; 3) aiding human decision-making in traffic control through natural language dialogues; and 4) enabling interactive feedback and solicitation of revised outcomes.
no code implementations • 30 Aug 2023 • Xu Han, Xianda Chen, Meixin Zhu, Pinlong Cai, Jianshan Zhou, Xiaowen Chu
The experimental results illustrate that EnsembleFollower yields improved accuracy of human-like behavior and achieves effectiveness in combining hybrid models, demonstrating that our proposed framework can handle diverse car-following conditions by leveraging the strengths of various low-level models.
1 code implementation • 14 Jul 2023 • Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, Yu Qiao
In this paper, we explore the potential of using a large language model (LLM) to understand the driving environment in a human-like manner and analyze its ability to reason, interpret, and memorize when facing complex scenarios.
1 code implementation • 13 Jul 2023 • Licheng Wen, Daocheng Fu, Song Mao, Pinlong Cai, Min Dou, Yikang Li, Yu Qiao
With the growing popularity of digital twin and autonomous driving in transportation, the demand for simulation systems capable of generating high-fidelity and reliable scenarios is increasing.