Search Results for author: Prabhat

Found 31 papers, 15 papers with code

MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework

1 code implementation1 May 2020 Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A. Tchelepi, Philip Marcus, Prabhat, Anima Anandkumar

We propose MeshfreeFlowNet, a novel deep learning-based super-resolution framework to generate continuous (grid-free) spatio-temporal solutions from the low-resolution inputs.


Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

no code implementations25 Mar 2020 Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat, Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu, Sitong An, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher

Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision.

Instrumentation and Detectors High Energy Physics - Experiment Computational Physics Data Analysis, Statistics and Probability

Enforcing Physical Constraints in CNNs through Differentiable PDE Layer

no code implementations ICLR Workshop DeepDiffEq 2019 Chiyu "Max" Jiang, Karthik Kashinath, Prabhat, Philip Marcus

To this end, we propose the use of a novel differentiable spectral projection layer for neural networks that efficiently enforces spatial PDE constraints using spectral methods, yet is fully differentiable, allowing for its use as a layer within Convolutional Neural Networks (CNNs) during end-to-end training.

Enforcing Physical Constraints in Neural Neural Networks through Differentiable PDE Layer

1 code implementation ICLR 2020 Chiyu "Max" Jiang, Karthik Kashinath, Prabhat, Philip Marcus

To this end, we propose the use of a novel differentiable spectral projection layer for neural networks that efficiently enforces spatial PDE constraints using spectral methods, yet is fully differentiable, allowing for its use as a layer in neural networks that supports end-to-end training.


Towards Unsupervised Segmentation of Extreme Weather Events

no code implementations16 Sep 2019 Adam Rupe, Karthik Kashinath, Nalini Kumar, Victor Lee, Prabhat, James P. Crutchfield

Extreme weather is one of the main mechanisms through which climate change will directly impact human society.

Representation Learning

Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical Systems

no code implementations13 May 2019 Jin-Long Wu, Karthik Kashinath, Adrian Albert, Dragos Chirila, Prabhat, Heng Xiao

In this work, we present a statistical constrained generative adversarial network by enforcing constraints of covariance from the training data, which results in an improved machine-learning-based emulator to capture the statistics of the training data generated by solving fully resolved PDEs.

Spherical CNNs on Unstructured Grids

1 code implementation ICLR 2019 Chiyu "Max" Jiang, Jingwei Huang, Karthik Kashinath, Prabhat, Philip Marcus, Matthias Niessner

We present an efficient convolution kernel for Convolutional Neural Networks (CNNs) on unstructured grids using parameterized differential operators while focusing on spherical signals such as panorama images or planetary signals.

Computer Vision Semantic Segmentation

Novel deep learning methods for track reconstruction

3 code implementations14 Oct 2018 Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat, Dustin Anderson, Jean-Roch Vlimant, Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris

The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification.

High Energy Physics - Experiment Data Analysis, Statistics and Probability

Exascale Deep Learning for Climate Analytics

3 code implementations3 Oct 2018 Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston

The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21. 0 PF/s and parallel efficiency of 79. 0%.

Distributed, Parallel, and Cluster Computing

Graph Neural Networks for IceCube Signal Classification

1 code implementation17 Sep 2018 Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi, Prabhat, Wahid Bhimji, Michael M. Bronstein, Spencer R. Klein, Joan Bruna

Tasks involving the analysis of geometric (graph- and manifold-structured) data have recently gained prominence in the machine learning community, giving birth to a rapidly developing field of geometric deep learning.

Classification General Classification

Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model

3 code implementations NeurIPS 2019 Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, Lei Shao, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip Torr, Victor Lee, Prabhat, Kyle Cranmer, Frank Wood

We present a novel probabilistic programming framework that couples directly to existing large-scale simulators through a cross-platform probabilistic execution protocol, which allows general-purpose inference engines to record and control random number draws within simulators in a language-agnostic way.

Probabilistic Programming

Approximate Inference for Constructing Astronomical Catalogs from Images

1 code implementation28 Feb 2018 Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat

We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets.

Variational Inference

Cataloging the Visible Universe through Bayesian Inference at Petascale

1 code implementation31 Jan 2018 Jeffrey Regier, Kiran Pamnany, Keno Fischer, Andreas Noack, Maximilian Lam, Jarrett Revels, Steve Howard, Ryan Giordano, David Schlegel, Jon McAuliffe, Rollin Thomas, Prabhat

We construct an astronomical catalog from 55 TB of imaging data using Celeste, a Bayesian variational inference code written entirely in the high-productivity programming language Julia.

Distributed, Parallel, and Cluster Computing Instrumentation and Methods for Astrophysics 85A35, 68W10, 62P35 J.2; D.1.3; G.3; I.2; D.2

Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC

5 code implementations9 Nov 2017 Wahid Bhimji, Steven Andrew Farrell, Thorsten Kurth, Michela Paganini, Prabhat, Evan Racah

There has been considerable recent activity applying deep convolutional neural nets (CNNs) to data from particle physics experiments.

ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events

1 code implementation NeurIPS 2017 Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Prabhat, Christopher Pal

We present a dataset, ExtremeWeather, to encourage machine learning research in this area and to help facilitate further work in understanding and mitigating the effects of climate change.

Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

1 code implementation5 Jul 2016 Alex Gittens, Aditya Devarakonda, Evan Racah, Michael Ringenburg, Lisa Gerhardt, Jey Kottalam, Jialin Liu, Kristyn Maschhoff, Shane Canon, Jatin Chhugani, Pramod Sharma, Jiyan Yang, James Demmel, Jim Harrell, Venkat Krishnamurthy, Michael W. Mahoney, Prabhat

We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms.

Distributed, Parallel, and Cluster Computing G.1.3; C.2.4

Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks

no code implementations28 Jan 2016 Evan Racah, Seyoon Ko, Peter Sadowski, Wahid Bhimji, Craig Tull, Sang-Yun Oh, Pierre Baldi, Prabhat

Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists.

General Classification

Celeste: Variational inference for a generative model of astronomical images

no code implementations3 Jun 2015 Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matt Hoffman, Dustin Lang, David Schlegel, Prabhat

We present a new, fully generative model of optical telescope image sets, along with a variational procedure for inference.

Variational Inference

Cannot find the paper you are looking for? You can Submit a new open access paper.