no code implementations • 25 Nov 2024 • Srikar Yellapragada, Alexandros Graikos, Kostas Triaridis, Prateek Prasanna, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras
ZoomLDM achieves state-of-the-art image generation quality across all scales, excelling particularly in the data-scarce setting of generating thumbnails of entire large images.
no code implementations • 22 Nov 2024 • Wentao Huang, Meilong Xu, Xiaoling Hu, Shahira Abousamra, Aniruddha Ganguly, Saarthak Kapse, Alisa Yurovsky, Prateek Prasanna, Tahsin Kurc, Joel Saltz, Michael L. Miller, Chao Chen
Spatial transcriptomics (ST) provides essential spatial context by mapping gene expression within tissue, enabling detailed study of cellular heterogeneity and tissue organization.
1 code implementation • 5 Nov 2024 • Fan Wang, Zhilin Zou, Nicole Sakla, Luke Partyka, Nil Rawal, Gagandeep Singh, Wei Zhao, Haibin Ling, Chuan Huang, Prateek Prasanna, Chao Chen
We empirically validate \emph{TopoTxR} using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures.
1 code implementation • 3 Oct 2024 • Wentao Huang, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Chao Chen
Weakly supervised whole slide image (WSI) classification is challenging due to the lack of patch-level labels and high computational costs.
1 code implementation • 2 Oct 2024 • Mahmudul Hasan, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Joel Saltz, Chao Chen
We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models.
no code implementations • 1 Oct 2024 • Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, Prateek Prasanna
In this work, we present RadGazeGen, a novel framework for integrating experts' eye gaze patterns and radiomic feature maps as controls to text-to-image diffusion models for high fidelity medical image generation.
no code implementations • 27 Aug 2024 • Xuan Xu, Saarthak Kapse, Prateek Prasanna
We introduce Histo-Diffusion, a novel diffusion-based method specially designed for generating and evaluating super-resolution images in digital pathology.
1 code implementation • CVPR 2024 • Saarthak Kapse, Pushpak Pati, Srijan Das, Jingwei Zhang, Chao Chen, Maria Vakalopoulou, Joel Saltz, Dimitris Samaras, Rajarsi R. Gupta, Prateek Prasanna
Introducing interpretability and reasoning into Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) analysis is challenging, given the complexity of gigapixel slides.
1 code implementation • CVPR 2024 • Alexandros Graikos, Srikar Yellapragada, Minh-Quan Le, Saarthak Kapse, Prateek Prasanna, Joel Saltz, Dimitris Samaras
Generating images from learned embeddings is agnostic to the source of the embeddings.
no code implementations • 13 Sep 2023 • Yunfan Li, Himanshu Gupta, Haibin Ling, IV Ramakrishnan, Prateek Prasanna, Georgios Georgakis, Aaron Sasson
Compared with classical open cholecystectomy, laparoscopic cholecystectomy (LC) is associated with significantly shorter recovery period, and hence is the preferred method.
no code implementations • 12 Sep 2023 • Saarthak Kapse, Srijan Das, Jingwei Zhang, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras, Prateek Prasanna
We propose DiRL, a Diversity-inducing Representation Learning technique for histopathology imaging.
1 code implementation • 1 Sep 2023 • Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna, Tahsin Kurc, Joel Saltz, Dimitris Samaras
To achieve high-quality results, diffusion models must be trained on large datasets.
1 code implementation • 21 Jul 2023 • Jiachen Yao, Yikai Zhang, Songzhu Zheng, Mayank Goswami, Prateek Prasanna, Chao Chen
However, segmentation label noise usually has strong spatial correlation and has prominent bias in distribution.
no code implementations • 12 Jul 2023 • Jingwei Zhang, Ke Ma, Saarthak Kapse, Joel Saltz, Maria Vakalopoulou, Prateek Prasanna, Dimitris Samaras
On these two datasets, the proposed additional pathology foundation model further achieves a relative improvement of 5. 07% to 5. 12% in Dice score and 4. 50% to 8. 48% in IOU.
1 code implementation • NeurIPS 2023 • Saumya Gupta, Yikai Zhang, Xiaoling Hu, Prateek Prasanna, Chao Chen
Segmentation of curvilinear structures such as vasculature and road networks is challenging due to relatively weak signals and complex geometry/topology.
no code implementations • 3 Apr 2023 • Xuan Xu, Saarthak Kapse, Rajarsi Gupta, Prateek Prasanna
This marks the first time that ViT has been introduced to diffusion autoencoders in computational pathology, allowing the model to better capture the complex and intricate details of histopathology images.
1 code implementation • 21 Mar 2023 • Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Joel Saltz, Maria Vakalopoulou, Dimitris Samaras
Compared to conventional full fine-tuning approaches, we fine-tune less than 1. 3% of the parameters, yet achieve a relative improvement of 1. 29%-13. 61% in accuracy and 3. 22%-27. 18% in AUROC and reduce GPU memory consumption by 38%-45% while training 21%-27% faster.
1 code implementation • 11 Mar 2023 • Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, Prateek Prasanna
To this end, we reformulate segmentation as a sparse encoding -> token completion -> dense decoding (SCD) pipeline.
no code implementations • ICCV 2023 • Aishik Konwer, Xiaoling Hu, Joseph Bae, Xuan Xu, Chao Chen, Prateek Prasanna
We propose a novel approach to learn enhanced modality-agnostic representations by employing a meta-learning strategy in training, even when only limited full modality samples are available.
1 code implementation • 23 Dec 2022 • Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Maria Vakalopoulou, Joel Saltz, Dimitris Samaras
Our method outperforms previous dense matching methods by up to 7. 2% in average precision for detection and 5. 6% in average precision for instance segmentation tasks.
no code implementations • 5 Oct 2022 • Nathaniel Braman, Prateek Prasanna, Kaustav Bera, Mehdi Alilou, Mohammadhadi Khorrami, Patrick Leo, Maryam Etesami, Manasa Vulchi, Paulette Turk, Amit Gupta, Prantesh Jain, Pingfu Fu, Nathan Pennell, Vamsidhar Velcheti, Jame Abraham, Donna Plecha, Anant Madabhushi
QuanTAV risk scores were prognostic of recurrence free survival in treatment cohorts chemotherapy for breast cancer (p=0. 002, HR=1. 25, 95% CI 1. 08-1. 44, C-index=. 66) and chemoradiation for NSCLC (p=0. 039, HR=1. 28, 95% CI 1. 01-1. 62, C-index=0. 66).
1 code implementation • 20 Jul 2022 • Saumya Gupta, Xiaoling Hu, James Kaan, Michael Jin, Mutshipay Mpoy, Katherine Chung, Gagandeep Singh, Mary Saltz, Tahsin Kurc, Joel Saltz, Apostolos Tassiopoulos, Prateek Prasanna, Chao Chen
In this paper, we introduce a novel topological interaction module to encode the topological interactions into a deep neural network.
no code implementations • 14 Jun 2022 • Yunfan Li, Vinayak Shenoy, Prateek Prasanna, I. V. Ramakrishnan, Haibin Ling, Himanshu Gupta
Automatic recognition of surgical phases in surgical videos is a fundamental task in surgical workflow analysis.
1 code implementation • 22 Apr 2022 • Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-han Wang, G Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer, Soonmee Cha, Madhura Ingalhalikar, Manali Jadhav, Umang Pandey, Jitender Saini, John Garrett, Matthew Larson, Robert Jeraj, Stuart Currie, Russell Frood, Kavi Fatania, Raymond Y Huang, Ken Chang, Carmen Balana, Jaume Capellades, Josep Puig, Johannes Trenkler, Josef Pichler, Georg Necker, Andreas Haunschmidt, Stephan Meckel, Gaurav Shukla, Spencer Liem, Gregory S Alexander, Joseph Lombardo, Joshua D Palmer, Adam E Flanders, Adam P Dicker, Haris I Sair, Craig K Jones, Archana Venkataraman, Meirui Jiang, Tiffany Y So, Cheng Chen, Pheng Ann Heng, Qi Dou, Michal Kozubek, Filip Lux, Jan Michálek, Petr Matula, Miloš Keřkovský, Tereza Kopřivová, Marek Dostál, Václav Vybíhal, Michael A Vogelbaum, J Ross Mitchell, Joaquim Farinhas, Joseph A Maldjian, Chandan Ganesh Bangalore Yogananda, Marco C Pinho, Divya Reddy, James Holcomb, Benjamin C Wagner, Benjamin M Ellingson, Timothy F Cloughesy, Catalina Raymond, Talia Oughourlian, Akifumi Hagiwara, Chencai Wang, Minh-Son To, Sargam Bhardwaj, Chee Chong, Marc Agzarian, Alexandre Xavier Falcão, Samuel B Martins, Bernardo C A Teixeira, Flávia Sprenger, David Menotti, Diego R Lucio, Pamela Lamontagne, Daniel Marcus, Benedikt Wiestler, Florian Kofler, Ivan Ezhov, Marie Metz, Rajan Jain, Matthew Lee, Yvonne W Lui, Richard McKinley, Johannes Slotboom, Piotr Radojewski, Raphael Meier, Roland Wiest, Derrick Murcia, Eric Fu, Rourke Haas, John Thompson, David Ryan Ormond, Chaitra Badve, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Rivka R Colen, Linmin Pei, Murat AK, Ashok Srinivasan, J Rajiv Bapuraj, Arvind Rao, Nicholas Wang, Ota Yoshiaki, Toshio Moritani, Sevcan Turk, Joonsang Lee, Snehal Prabhudesai, Fanny Morón, Jacob Mandel, Konstantinos Kamnitsas, Ben Glocker, Luke V M Dixon, Matthew Williams, Peter Zampakis, Vasileios Panagiotopoulos, Panagiotis Tsiganos, Sotiris Alexiou, Ilias Haliassos, Evangelia I Zacharaki, Konstantinos Moustakas, Christina Kalogeropoulou, Dimitrios M Kardamakis, Yoon Seong Choi, Seung-Koo Lee, Jong Hee Chang, Sung Soo Ahn, Bing Luo, Laila Poisson, Ning Wen, Pallavi Tiwari, Ruchika Verma, Rohan Bareja, Ipsa Yadav, Jonathan Chen, Neeraj Kumar, Marion Smits, Sebastian R van der Voort, Ahmed Alafandi, Fatih Incekara, Maarten MJ Wijnenga, Georgios Kapsas, Renske Gahrmann, Joost W Schouten, Hendrikus J Dubbink, Arnaud JPE Vincent, Martin J van den Bent, Pim J French, Stefan Klein, Yading Yuan, Sonam Sharma, Tzu-Chi Tseng, Saba Adabi, Simone P Niclou, Olivier Keunen, Ann-Christin Hau, Martin Vallières, David Fortin, Martin Lepage, Bennett Landman, Karthik Ramadass, Kaiwen Xu, Silky Chotai, Lola B Chambless, Akshitkumar Mistry, Reid C Thompson, Yuriy Gusev, Krithika Bhuvaneshwar, Anousheh Sayah, Camelia Bencheqroun, Anas Belouali, Subha Madhavan, Thomas C Booth, Alysha Chelliah, Marc Modat, Haris Shuaib, Carmen Dragos, Aly Abayazeed, Kenneth Kolodziej, Michael Hill, Ahmed Abbassy, Shady Gamal, Mahmoud Mekhaimar, Mohamed Qayati, Mauricio Reyes, Ji Eun Park, Jihye Yun, Ho Sung Kim, Abhishek Mahajan, Mark Muzi, Sean Benson, Regina G H Beets-Tan, Jonas Teuwen, Alejandro Herrera-Trujillo, Maria Trujillo, William Escobar, Ana Abello, Jose Bernal, Jhon Gómez, Joseph Choi, Stephen Baek, Yusung Kim, Heba Ismael, Bryan Allen, John M Buatti, Aikaterini Kotrotsou, Hongwei Li, Tobias Weiss, Michael Weller, Andrea Bink, Bertrand Pouymayou, Hassan F Shaykh, Joel Saltz, Prateek Prasanna, Sampurna Shrestha, Kartik M Mani, David Payne, Tahsin Kurc, Enrique Pelaez, Heydy Franco-Maldonado, Francis Loayza, Sebastian Quevedo, Pamela Guevara, Esteban Torche, Cristobal Mendoza, Franco Vera, Elvis Ríos, Eduardo López, Sergio A Velastin, Godwin Ogbole, Dotun Oyekunle, Olubunmi Odafe-Oyibotha, Babatunde Osobu, Mustapha Shu'aibu, Adeleye Dorcas, Mayowa Soneye, Farouk Dako, Amber L Simpson, Mohammad Hamghalam, Jacob J Peoples, Ricky Hu, Anh Tran, Danielle Cutler, Fabio Y Moraes, Michael A Boss, James Gimpel, Deepak Kattil Veettil, Kendall Schmidt, Brian Bialecki, Sailaja Marella, Cynthia Price, Lisa Cimino, Charles Apgar, Prashant Shah, Bjoern Menze, Jill S Barnholtz-Sloan, Jason Martin, Spyridon Bakas
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data.
1 code implementation • 28 Mar 2022 • Saarthak Kapse, Srijan Das, Prateek Prasanna
To jointly leverage complementary information from multiple resolutions, we present a novel transformer based Pyramidal Context-Detail Network (CD-Net).
1 code implementation • 10 Mar 2022 • Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, Prateek Prasanna
Masked Autoencoder (MAE) has recently been shown to be effective in pre-training Vision Transformers (ViT) for natural image analysis.
no code implementations • CVPR 2022 • Aishik Konwer, Xuan Xu, Joseph Bae, Chao Chen, Prateek Prasanna
In our method, a self-attention based Temporal Convolutional Network (TCN) is used to learn a representation that is most reflective of the disease trajectory.
1 code implementation • 23 Feb 2022 • Moinak Bhattacharya, Shubham Jain, Prateek Prasanna
RadioTransformer fills this critical gap by learning from radiologists' visual search patterns, encoded as 'human visual attention regions' in a cascaded global-focal transformer framework.
no code implementations • 3 Feb 2022 • Xuan Xu, Prateek Prasanna
Image-based brain cancer prediction models, based on radiomics, quantify the radiologic phenotype from magnetic resonance imaging (MRI).
1 code implementation • 18 Jan 2022 • Lei Zhou, Joseph Bae, Huidong Liu, Gagandeep Singh, Jeremy Green, Amit Gupta, Dimitris Samaras, Prateek Prasanna
Well-labeled datasets of chest radiographs (CXRs) are difficult to acquire due to the high cost of annotation.
no code implementations • 18 Jul 2021 • Aishik Konwer, Joseph Bae, Gagandeep Singh, Rishabh Gattu, Syed Ali, Jeremy Green, Tej Phatak, Prateek Prasanna
This vector is used as an input to a decoder module to predict patch severity grades at a future timepoint.
no code implementations • 13 Jul 2021 • Sudhir Suman, Gagandeep Singh, Nicole Sakla, Rishabh Gattu, Jeremy Green, Tej Phatak, Dimitris Samaras, Prateek Prasanna
In this study we propose a two-stage attention-based CNN-LSTM network for predicting PE, its associated type (chronic, acute) and corresponding location (leftsided, rightsided or central) on computed tomography (CT) examinations.
1 code implementation • 13 May 2021 • Fan Wang, Saarthak Kapse, Steven Liu, Prateek Prasanna, Chao Chen
Characterization of breast parenchyma on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures.
no code implementations • 12 Mar 2021 • Marwa Ismail, Prateek Prasanna, Kaustav Bera, Volodymyr Statsevych, Virginia Hill, Gagandeep Singh, Sasan Partovi, Niha Beig, Sean McGarry, Peter Laviolette, Manmeet Ahluwalia, Anant Madabhushi, Pallavi Tiwari
Our work is based on the rationale that highly aggressive tumors tend to grow uncontrollably, leading to pronounced biomechanical tissue deformations in the normal parenchyma, which when combined with local morphological differences in the tumor confines on MRI scans, will comprehensively capture tumor field effect.
no code implementations • 11 Feb 2021 • Ibrahim Hammoud, Prateek Prasanna, IV Ramakrishnan, Adam Singer, Mark Henry, Henry Thode
We also show that discretization improves model performance by comparing our model to a baseline logistic regression model.
no code implementations • 15 Jul 2020 • Joseph Bae, Saarthak Kapse, Gagandeep Singh, Rishabh Gattu, Syed Ali, Neal Shah, Colin Marshall, Jonathan Pierce, Tej Phatak, Amit Gupta, Jeremy Green, Nikhil Madan, Prateek Prasanna
Radiomic and DL classification models had mAUCs of 0. 78+/-0. 02 and 0. 81+/-0. 04, compared with expert scores mAUCs of 0. 75+/-0. 02 and 0. 79+/-0. 05 for mechanical ventilation requirement and mortality prediction, respectively.
no code implementations • 17 Jun 2020 • Marwa Ismail, Ramon Correa, Kaustav Bera, Ruchika Verma, Anas Saeed Bamashmos, Niha Beig, Jacob Antunes, Prateek Prasanna, Volodymyr Statsevych, Manmeet Ahluwalia, Pallavi Tiwari
We evaluate the efficacy of SpACe maps on MRI scans with co-localized ground truth obtained from corresponding biopsy, to predict the mutation status of 2 driver genes in Glioblastoma: (1) EGFR (n=91), and (2) MGMT (n=81).
no code implementations • 16 Jun 2020 • Marwa Ismail, Virginia Hill, Volodymyr Statsevych, Evan Mason, Ramon Correa, Prateek Prasanna, Gagandeep Singh, Kaustav Bera, Rajat Thawani, Anant Madabhushi, Manmeet Ahluwalia, Pallavi Tiwari
In this study, 74 pre-treatment Glioblastoma MRI scans with PsP (33) and tumor recurrence (41) were analyzed.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.