Search Results for author: Predrag Radivojac

Found 12 papers, 5 papers with code

Learning Tree-Structured Composition of Data Augmentation

1 code implementation26 Aug 2024 Dongyue Li, Kailai Chen, Predrag Radivojac, Hongyang R. Zhang

Existing augmentation methods such as RandAugment randomly sample from a list of pre-selected transformations, while methods such as AutoAugment apply advanced search to optimize over an augmentation set of size $k^d$, which is the number of transformation sequences of length $d$, given a list of $k$ transformations.

Contrastive Learning Data Augmentation +1

Leveraging Structure for Improved Classification of Grouped Biased Data

1 code implementation7 Dec 2022 Daniel Zeiberg, Shantanu Jain, Predrag Radivojac

To model the inherent structure in such data, we assume the partition-projected class-conditional invariance across groups, defined in terms of the group-agnostic feature space.

Binary Classification Classification +1

Explaining Deep Tractable Probabilistic Models: The sum-product network case

1 code implementation19 Oct 2021 Athresh Karanam, Saurabh Mathur, Predrag Radivojac, David M. Haas, Kristian Kersting, Sriraam Natarajan

We consider the problem of explaining a class of tractable deep probabilistic models, the Sum-Product Networks (SPNs) and present an algorithm ExSPN to generate explanations.

Classification in biological networks with hypergraphlet kernels

no code implementations14 Mar 2017 Jose Lugo-Martinez, Predrag Radivojac

Graphs, however, often suffer from information loss when modeling physical systems due to their inability to accurately represent multiobject relationships.

Classification Edge Classification +2

Recovering True Classifier Performance in Positive-Unlabeled Learning

no code implementations2 Feb 2017 Shantanu Jain, Martha White, Predrag Radivojac

A common approach in positive-unlabeled learning is to train a classification model between labeled and unlabeled data.

Estimating the class prior and posterior from noisy positives and unlabeled data

no code implementations NeurIPS 2016 Shantanu Jain, Martha White, Predrag Radivojac

We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data.

Classification Density Estimation +2

A new class of metrics for learning on real-valued and structured data

no code implementations22 Mar 2016 Ruiyu Yang, Yuxiang Jiang, Scott Mathews, Elizabeth A. Housworth, Matthew W. Hahn, Predrag Radivojac

We propose a new class of metrics on sets, vectors, and functions that can be used in various stages of data mining, including exploratory data analysis, learning, and result interpretation.

Nonparametric semi-supervised learning of class proportions

1 code implementation8 Jan 2016 Shantanu Jain, Martha White, Michael W. Trosset, Predrag Radivojac

This problem can be decomposed into two steps: (i) the development of accurate predictors that discriminate between positive and unlabeled data, and (ii) the accurate estimation of the prior probabilities of positive and negative examples.

Density Estimation

An expanded evaluation of protein function prediction methods shows an improvement in accuracy

1 code implementation3 Jan 2016 Yuxiang Jiang, Tal Ronnen Oron, Wyatt T Clark, Asma R Bankapur, Daniel D'Andrea, Rosalba Lepore, Christopher S Funk, Indika Kahanda, Karin M Verspoor, Asa Ben-Hur, Emily Koo, Duncan Penfold-Brown, Dennis Shasha, Noah Youngs, Richard Bonneau, Alexandra Lin, Sayed ME Sahraeian, Pier Luigi Martelli, Giuseppe Profiti, Rita Casadio, Renzhi Cao, Zhaolong Zhong, Jianlin Cheng, Adrian Altenhoff, Nives Skunca, Christophe Dessimoz, Tunca Dogan, Kai Hakala, Suwisa Kaewphan, Farrokh Mehryary, Tapio Salakoski, Filip Ginter, Hai Fang, Ben Smithers, Matt Oates, Julian Gough, Petri Törönen, Patrik Koskinen, Liisa Holm, Ching-Tai Chen, Wen-Lian Hsu, Kevin Bryson, Domenico Cozzetto, Federico Minneci, David T Jones, Samuel Chapman, Dukka B K. C., Ishita K Khan, Daisuke Kihara, Dan Ofer, Nadav Rappoport, Amos Stern, Elena Cibrian-Uhalte, Paul Denny, Rebecca E Foulger, Reija Hieta, Duncan Legge, Ruth C Lovering, Michele Magrane, Anna N Melidoni, Prudence Mutowo-Meullenet, Klemens Pichler, Aleksandra Shypitsyna, Biao Li, Pooya Zakeri, Sarah ElShal, Léon-Charles Tranchevent, Sayoni Das, Natalie L Dawson, David Lee, Jonathan G Lees, Ian Sillitoe, Prajwal Bhat, Tamás Nepusz, Alfonso E Romero, Rajkumar Sasidharan, Haixuan Yang, Alberto Paccanaro, Jesse Gillis, Adriana E Sedeño-Cortés, Paul Pavlidis, Shou Feng, Juan M Cejuela, Tatyana Goldberg, Tobias Hamp, Lothar Richter, Asaf Salamov, Toni Gabaldon, Marina Marcet-Houben, Fran Supek, Qingtian Gong, Wei Ning, Yuanpeng Zhou, Weidong Tian, Marco Falda, Paolo Fontana, Enrico Lavezzo, Stefano Toppo, Carlo Ferrari, Manuel Giollo, Damiano Piovesan, Silvio Tosatto, Angela del Pozo, José M Fernández, Paolo Maietta, Alfonso Valencia, Michael L Tress, Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, Alessandro Savino, Hafeez Ur Rehman, Matteo Re, Marco Mesiti, Giorgio Valentini, Joachim W Bargsten, Aalt DJ van Dijk, Branislava Gemovic, Sanja Glisic, Vladmir Perovic, Veljko Veljkovic, Nevena Veljkovic, Danillo C Almeida-e-Silva, Ricardo ZN Vencio, Malvika Sharan, Jörg Vogel, Lakesh Kansakar, Shanshan Zhang, Slobodan Vucetic, Zheng Wang, Michael JE Sternberg, Mark N Wass, Rachael P Huntley, Maria J Martin, Claire O'Donovan, Peter N. Robinson, Yves Moreau, Anna Tramontano, Patricia C Babbitt, Steven E Brenner, Michal Linial, Christine A Orengo, Burkhard Rost, Casey S Greene, Sean D Mooney, Iddo Friedberg, Predrag Radivojac

To review progress in the field, the analysis also compared the best methods participating in CAFA1 to those of CAFA2.

Quantitative Methods

Cannot find the paper you are looking for? You can Submit a new open access paper.