no code implementations • NAACL (ACL) 2022 • Weiyi Lu, Sunny Rajagopalan, Priyanka Nigam, Jaspreet Singh, Xiaodi Sun, Yi Xu, Belinda Zeng, Trishul Chilimbi
However, one issue that often arises in MTL is the convergence speed between tasks varies due to differences in task difficulty, so it can be a challenge to simultaneously achieve the best performance on all tasks with a single model checkpoint.
1 code implementation • 28 Oct 2024 • Yilun Jin, Zheng Li, Chenwei Zhang, Tianyu Cao, Yifan Gao, Pratik Jayarao, Mao Li, Xin Liu, Ritesh Sarkhel, Xianfeng Tang, Haodong Wang, Zhengyang Wang, Wenju Xu, Jingfeng Yang, Qingyu Yin, Xian Li, Priyanka Nigam, Yi Xu, Kai Chen, Qiang Yang, Meng Jiang, Bing Yin
Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants.
no code implementations • 10 Oct 2024 • Julian Katz-Samuels, Zheng Li, Hyokun Yun, Priyanka Nigam, Yi Xu, Vaclav Petricek, Bing Yin, Trishul Chilimbi
The ability of large language models (LLMs) to execute complex instructions is essential for their real-world applications.
1 code implementation • 25 Apr 2024 • Fenglin Liu, Zheng Li, Hongjian Zhou, Qingyu Yin, Jingfeng Yang, Xianfeng Tang, Chen Luo, Ming Zeng, Haoming Jiang, Yifan Gao, Priyanka Nigam, Sreyashi Nag, Bing Yin, Yining Hua, Xuan Zhou, Omid Rohanian, Anshul Thakur, Lei Clifton, David A. Clifton
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention.
no code implementations • 7 Jun 2022 • Xiaodi Sun, Sunny Rajagopalan, Priyanka Nigam, Weiyi Lu, Yi Xu, Belinda Zeng, Trishul Chilimbi
In this paper, we propose an improvement to prompt-based fine-tuning that addresses these two issues.
no code implementations • 12 Oct 2021 • Vihan Lakshman, Choon Hui Teo, Xiaowen Chu, Priyanka Nigam, Abhinandan Patni, Pooja Maknikar, SVN Vishwanathan
When training a dyadic model, one seeks to embed two different types of entities (e. g., queries and documents or users and movies) in a common vector space such that pairs with high relevance are positioned nearby.
1 code implementation • 1 Jul 2019 • Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian, Ding, Ankit Shingavi, Choon Hui Teo, Hao Gu, Bing Yin
To address these issues, we train a deep learning model for semantic matching using customer behavior data.