1 code implementation • 19 Mar 2025 • Yang Li, Soumya Snigdha Kundu, Maxence Boels, Toktam Mahmoodi, Sebastien Ourselin, Tom Vercauteren, Prokar Dasgupta, Jonathan Shapey, Alejandro Granados
This paper advances the feasibility of training and deploying detection models on the edge, making federated object detection more practical for time-critical and resource-constrained medical and surgical applications.
no code implementations • 25 Dec 2024 • Maxence Boels, Yang Liu, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
To address these limitations, we propose SWAG (Surgical Workflow Anticipative Generation), a unified framework for phase recognition and long-term anticipation of surgical workflows.
1 code implementation • 19 Mar 2024 • Zhenyu Bu, Yang Liu, Jiayu Huo, Jingjing Peng, Kaini Wang, Guangquan Zhou, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Accurate identification of End-Diastolic (ED) and End-Systolic (ES) frames is key for cardiac function assessment through echocardiography.
1 code implementation • 15 Mar 2024 • Peiran Wu, Yang Liu, Jiayu Huo, Gongyu Zhang, Christos Bergeles, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Video-based surgical instrument segmentation plays an important role in robot-assisted surgeries.
no code implementations • 10 Mar 2024 • Maxence Boels, Yang Liu, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
In conclusion, SuPRA presents a new multi-task approach that paves the way for improved intra-operative assistance through surgical phase recognition and prediction of future events.
no code implementations • 27 Feb 2024 • Yang Liu, Xiaomin Yu, Gongyu Zhang, Zhen Zhu, Christos Bergeles, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
First, we introduce an innovative adaptive noise scale that effectively generates the textual elements with more variability while preserving the original text feature's integrity.
2 code implementations • 31 Dec 2023 • Dimitrios Psychogyios, Emanuele Colleoni, Beatrice van Amsterdam, Chih-Yang Li, Shu-Yu Huang, Yuchong Li, Fucang Jia, Baosheng Zou, Guotai Wang, Yang Liu, Maxence Boels, Jiayu Huo, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin, Mengya Xu, An Wang, Yanan Wu, Long Bai, Hongliang Ren, Atsushi Yamada, Yuriko Harai, Yuto Ishikawa, Kazuyuki Hayashi, Jente Simoens, Pieter DeBacker, Francesco Cisternino, Gabriele Furnari, Alex Mottrie, Federica Ferraguti, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Soohee Kim, Seung Hyun Lee, Kyu Eun Lee, Hyoun-Joong Kong, Kui Fu, Chao Li, Shan An, Stefanie Krell, Sebastian Bodenstedt, Nicolas Ayobi, Alejandra Perez, Santiago Rodriguez, Juanita Puentes, Pablo Arbelaez, Omid Mohareri, Danail Stoyanov
Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems.
1 code implementation • 15 May 2023 • Yang Liu, Maxence Boels, Luis C. Garcia-Peraza-Herrera, Tom Vercauteren, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Our results demonstrate the effectiveness of our approach in achieving state-of-the-art performance of surgical phase recognition on two datasets of different surgical procedures and temporal sequencing characteristics whilst introducing mechanisms that cope with long videos.
Ranked #1 on
Surgical phase recognition
on Cholec80
1 code implementation • ICCV 2023 • Yang Liu, Jiayu Huo, Jingjing Peng, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
We highlight that the inference time of SKiT is constant, and independent from the input length, making it a stable choice for keeping a record of important global information, that appears on long surgical videos, essential for phase recognition.