6 code implementations • 8 Apr 2024 • Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, Kranthi Kiran GV, Jan Kocoń, Bartłomiej Koptyra, Satyapriya Krishna, Ronald McClelland Jr., Jiaju Lin, Niklas Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Cahya Wirawan, Stanisław Woźniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, Rui-Jie Zhu
We present Eagle (RWKV-5) and Finch (RWKV-6), sequence models improving upon the RWKV (RWKV-4) architecture.
1 code implementation • 14 Feb 2024 • Stanisław Woźniak, Bartłomiej Koptyra, Arkadiusz Janz, Przemysław Kazienko, Jan Kocoń
Large language models (LLMs) have significantly advanced Natural Language Processing (NLP) tasks in recent years.
1 code implementation • 14 Feb 2024 • Teddy Ferdinan, Jan Kocoń, Przemysław Kazienko
We introduce a concept called Point in the Unknown (PiU) to identify atomic knowledge unknown to a model, along with four methods for automatic PiUs identification, facilitating the creation of a self-learning loop that focuses exclusively on the absorption of currently unknown knowledge into the model.
no code implementations • 18 Dec 2023 • Julita Bielaniewicz, Przemysław Kazienko
It seems that concatenating personalized datasets, even with the cost of normalizing the range of annotations across all datasets, if combined with the personalized models, results in an enormous increase in the performance of humor detection.
1 code implementation • 13 Dec 2023 • Kamil Kanclerz, Julita Bielaniewicz, Marcin Gruza, Jan Kocon, Stanisław Woźniak, Przemysław Kazienko
Data annotated by humans is a source of knowledge by describing the peculiarities of the problem and therefore fueling the decision process of the trained model.
1 code implementation • 10 Dec 2023 • Piotr Miłkowski, Konrad Karanowski, Patryk Wielopolski, Jan Kocoń, Przemysław Kazienko, Maciej Zięba
It may be solved by Personalized Natural Language Processing (PNLP), where the model exploits additional information about the reader to make more accurate predictions.
1 code implementation • 26 Sep 2023 • Kleanthis Avramidis, Dominika Kunc, Bartosz Perz, Kranti Adsul, Tiantian Feng, Przemysław Kazienko, Stanisław Saganowski, Shrikanth Narayanan
We train this model in a self-supervised manner with 275, 000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks.
1 code implementation • 21 Feb 2023 • Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydło, Joanna Baran, Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, Anna Kocoń, Bartłomiej Koptyra, Wiktoria Mieleszczenko-Kowszewicz, Piotr Miłkowski, Marcin Oleksy, Maciej Piasecki, Łukasz Radliński, Konrad Wojtasik, Stanisław Woźniak, Przemysław Kazienko
Our comparison of its results with available State-of-the-Art (SOTA) solutions showed that the average loss in quality of the ChatGPT model was about 25% for zero-shot and few-shot evaluation.
no code implementations • 22 Dec 2019 • Stanisław Saganowski, Anna Dutkowiak, Adam Dziadek, Maciej Dzieżyc, Joanna Komoszyńska, Weronika Michalska, Adam Polak, Michał Ujma, Przemysław Kazienko
Wearables like smartwatches or wrist bands equipped with pervasive sensors enable us to monitor our physiological signals.
no code implementations • 11 Sep 2019 • Łukasz Augustyniak, Tomasz Kajdanowicz, Przemysław Kazienko
Recently, a variety of model designs and methods have blossomed in the context of the sentiment analysis domain.
Aspect-Based Sentiment Analysis
Aspect-Based Sentiment Analysis (ABSA)
+2
no code implementations • 4 Sep 2019 • Łukasz Augustyniak, Tomasz Kajdanowicz, Przemysław Kazienko
We propose a novel approach to generate aspect hierarchies that proved to be consistently correct compared with human-generated hierarchies.
1 code implementation • 3 Sep 2019 • Łukasz Augustyniak, Tomasz Kajdanowicz, Przemysław Kazienko
We proposed a~new accurate aspect extraction method that makes use of both word and character-based embeddings.
no code implementations • 29 Oct 2018 • Wenyuan Liu, Stanisław Saganowski, Przemysław Kazienko, Siew Ann Cheong
The advancement of science as outlined by Popper and Kuhn is largely qualitative, but with bibliometric data it is possible and desirable to develop a quantitative picture of scientific progress.
no code implementations • 10 Jun 2016 • Roman Bartusiak, Łukasz Augustyniak, Tomasz Kajdanowicz, Przemysław Kazienko, Maciej Piasecki
Since WordNet embeds natural language in the form of a complex network, a transformation mechanism WordNet2Vec is proposed in the paper.
no code implementations • 5 Oct 2015 • Tomasz Kajdanowicz, Radosław Michalski, Katarzyna Musiał, Przemysław Kazienko
The question that arises is: "labels of which nodes should be collected and used for learning in order to provide the best classification accuracy for the whole network?".