no code implementations • 9 Apr 2025 • Krzysztof Byrski, Jacek Tabor, Przemysław Spurek, Marcin Mazur
In this paper, we introduce CEC-MMR, a novel approach based on Cross-Entropy Clustering (CEC), which allows for the automatic detection of the number of components in a regression problem.
1 code implementation • 14 Feb 2025 • Dawid Malarz, Artur Kasymov, Maciej Zięba, Jacek Tabor, Przemysław Spurek
In practice, in controlling the impact of guidance we can see the trade-off between the quality of the generated images and correspondence to the prompt.
1 code implementation • 11 Feb 2025 • Rafał Tobiasz, Grzegorz Wilczyński, Marcin Mazur, Sławomir Tadeja, Przemysław Spurek
GS-based algorithms almost always bypass classical methods such as ray tracing, which offers numerous inherent advantages for rendering.
1 code implementation • 31 Jan 2025 • Krzysztof Byrski, Marcin Mazur, Jacek Tabor, Tadeusz Dziarmaga, Marcin Kądziołka, Dawid Baran, Przemysław Spurek
3D Gaussian Splatting (3DGS) is a process that enables the direct creation of 3D objects from 2D images.
1 code implementation • 27 Nov 2024 • Jakub Szymkowiak, Weronika Jakubowska, Dawid Malarz, Weronika Smolak-Dyżewska, Maciej Zięba, Przemysław Musialski, Wojtek Pałubicki, Przemysław Spurek
Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians.
1 code implementation • 19 Nov 2024 • Joanna Kaleta, Weronika Smolak-Dyżewska, Dawid Malarz, Diego Dall'Alba, Przemysław Korzeniowski, Przemysław Spurek
Endoscopic procedures are crucial for colorectal cancer diagnosis, and three-dimensional reconstruction of the environment for real-time novel-view synthesis can significantly enhance diagnosis.
2 code implementations • 17 Nov 2024 • Weronika Smolak-Dyżewska, Dawid Malarz, Kornel Howil, Jan Kaczmarczyk, Marcin Mazur, Przemysław Spurek
One potential solution is to use a 3D Gaussian Splatting (3DGS) based model, such as the Video Gaussian Representation (VGR), which is capable of encoding video as a multitude of 3D Gaussians and is applicable for numerous video processing operations, including editing.
1 code implementation • 7 Oct 2024 • Adam Kania, Marko Mihajlovic, Sergey Prokudin, Jacek Tabor, Przemysław Spurek
Implicit Neural Representations (INRs) have recently gained attention as a powerful approach for continuously representing signals such as images, videos, and 3D shapes using multilayer perceptrons (MLPs).
1 code implementation • 4 Oct 2024 • Patryk Krukowski, Daniel Wilczak, Jacek Tabor, Anna Bielawska, Przemysław Spurek
Two crucial problems in NNC are of profound interest to the scientific community: how to calculate the robustness of a given pre-trained network and how to construct robust networks.
1 code implementation • 4 Oct 2024 • Artur Kasymov, Marcin Sendera, Michał Stypułkowski, Maciej Zięba, Przemysław Spurek
To solve this issue, we introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach.
1 code implementation • 2 Oct 2024 • Joanna Waczyńska, Tomasz Szczepanik, Piotr Borycki, Sławomir Tadeja, Thomas Bohné, Przemysław Spurek
Our approach improves the rendering quality and allows realistic image modifications, including human-inspired perception of photos in the 3D world.
1 code implementation • 9 Sep 2024 • Piotr Borycki, Weronika Smolak, Joanna Waczyńska, Marcin Mazur, Sławomir Tadeja, Przemysław Spurek
In contrast, our Gaussian Splatting for Physics-Based Simulations (GASP) model uses such a map (without any modifications) and flat Gaussian distributions, which are parameterized by three points (mesh faces).
1 code implementation • 17 Jul 2024 • Mateusz Poleski, Jacek Tabor, Przemysław Spurek
Although ADM-G successfully generates elements from the given class, there is a significant quality gap compared to a model originally conditioned on this class.
2 code implementations • 24 May 2024 • Patryk Krukowski, Anna Bielawska, Kamil Książek, Paweł Wawrzyński, Paweł Batorski, Przemysław Spurek
To address this issue, we introduce HINT, a technique that employs interval arithmetic within the embedding space and utilizes a hypernetwork to map these intervals to the target network parameter space.
1 code implementation • 23 May 2024 • Joanna Waczyńska, Piotr Borycki, Joanna Kaleta, Sławomir Tadeja, Przemysław Spurek
Thus, we can make the scene's dynamic editable over time or while maintaining partial dynamics.
1 code implementation • 9 Feb 2024 • Georgii Stanishevskii, Jakub Steczkiewicz, Tomasz Szczepanik, Sławomir Tadeja, Jacek Tabor, Przemysław Spurek
NeRFs encode the object's shape and color in neural network weights using a handful of images with known camera positions to generate novel views.
1 code implementation • 2 Feb 2024 • Paweł Batorski, Dawid Malarz, Marcin Przewięźlikowski, Marcin Mazur, Sławomir Tadeja, Przemysław Spurek
Neural radiance fields (NeRFs) are a widely accepted standard for synthesizing new 3D object views from a small number of base images.
1 code implementation • 2 Feb 2024 • Joanna Waczyńska, Piotr Borycki, Sławomir Tadeja, Jacek Tabor, Przemysław Spurek
Gaussian Splatting (GS) is a novel, state-of-the-art technique for rendering points in a 3D scene by approximating their contribution to image pixels through Gaussian distributions, warranting fast training and real-time rendering.
1 code implementation • 21 Dec 2023 • Dawid Malarz, Weronika Smolak, Jacek Tabor, Sławomir Tadeja, Przemysław Spurek
Our model uses Gaussian distributions with trainable positions (i. e. means of Gaussian), shape (i. e. covariance of Gaussian), color and opacity, and a neural network that takes Gaussian parameters and viewing direction to produce changes in the said color and opacity.
1 code implementation • 7 Nov 2023 • Łukasz Struski, Tomasz Urbańczyk, Krzysztof Bucki, Bartłomiej Cupiał, Aneta Kaczyńska, Przemysław Spurek, Jacek Tabor
However, video generation of high-resolution data is a very demanding task for generative models, due to the large need for memory.
1 code implementation • 29 Sep 2023 • Kamil Książek, Przemysław Spurek
In the paper, we propose a method called HyperMask, which dynamically filters a target network depending on the CL task.
no code implementations • 21 Sep 2023 • Adrian Suwała, Bartosz Wójcik, Magdalena Proszewska, Jacek Tabor, Przemysław Spurek, Marek Śmieja
Conditional GANs are frequently used for manipulating the attributes of face images, such as expression, hairstyle, pose, or age.
1 code implementation • 17 May 2023 • Dominik Zimny, Artur Kasymov, Adam Kania, Jacek Tabor, Maciej Zięba, Przemysław Spurek
Furthermore, we can train MultiPlaneNeRF on a large data set and force our implicit decoder to generalize across many objects.
no code implementations • 3 Apr 2023 • Krzysztof Byrski, Przemysław Spurek, Jacek Tabor
In this work, we propose a density representation of the closed curve, which can be used to detect the complicated templates in the data.
1 code implementation • 10 Mar 2023 • Wojciech Zając, Joanna Waczyńska, Piotr Borycki, Jacek Tabor, Maciej Zięba, Przemysław Spurek
In contrast to traditional NeRF-based structures that use neural networks for RGB color and volume density modeling, our approach utilizes the FLAME mesh as a distinct density volume.
1 code implementation • 9 Feb 2023 • Filip Szatkowski, Karol J. Piczak, Przemysław Spurek, Jacek Tabor, Tomasz Trzciński
Implicit Neural Representations (INRs) are nowadays used to represent multimedia signals across various real-life applications, including image super-resolution, image compression, or 3D rendering.
1 code implementation • 27 Jan 2023 • Adam Kania, Artur Kasymov, Jakub Kościukiewicz, Artur Górak, Marcin Mazur, Maciej Zięba, Przemysław Spurek
The recent surge in popularity of deep generative models for 3D objects has highlighted the need for more efficient training methods, particularly given the difficulties associated with training with conventional 3D representations, such as voxels or point clouds.
no code implementations • 3 Nov 2022 • Filip Szatkowski, Karol J. Piczak, Przemysław Spurek, Jacek Tabor, Tomasz Trzciński
Implicit neural representations (INRs) are a rapidly growing research field, which provides alternative ways to represent multimedia signals.
1 code implementation • 6 Oct 2022 • Piotr Borycki, Piotr Kubacki, Marcin Przewięźlikowski, Tomasz Kuśmierczyk, Jacek Tabor, Przemysław Spurek
Unfortunately, previous modifications of MAML are limited due to the simplicity of Gaussian posteriors, MAML-like gradient-based weight updates, or by the same structure enforced for universal and adapted weights.
1 code implementation • ICLR Workshop GTRL 2021 • Piotr Tempczyk, Rafał Michaluk, Łukasz Garncarek, Przemysław Spurek, Jacek Tabor, Adam Goliński
We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL).
no code implementations • 19 Jun 2022 • Łukasz Struski, Marcin Mazur, Paweł Batorski, Przemysław Spurek, Jacek Tabor
Many crucial problems in deep learning and statistics are caused by a variational gap, i. e., a difference between evidence and evidence lower bound (ELBO).
3 code implementations • 16 Jun 2022 • Maciej Wołczyk, Karol J. Piczak, Bartosz Wójcik, Łukasz Pustelnik, Paweł Morawiecki, Jacek Tabor, Tomasz Trzciński, Przemysław Spurek
We introduce a new training paradigm that enforces interval constraints on neural network parameter space to control forgetting.
1 code implementation • 2 Jun 2022 • Dominik Zimny, Joanna Waczyńska, Tomasz Trzciński, Przemysław Spurek
Contemporary registration devices for 3D visual information, such as LIDARs and various depth cameras, capture data as 3D point clouds.
1 code implementation • 21 Mar 2022 • Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, Przemysław Spurek
Few-shot models aim at making predictions using a minimal number of labeled examples from a given task.
1 code implementation • 15 Nov 2021 • Marcin Mazur, Łukasz Pustelnik, Szymon Knop, Patryk Pagacz, Przemysław Spurek
We propose an effective regularization strategy (CW-TaLaR) for solving continual learning problems.
1 code implementation • NeurIPS 2021 • Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola, Tomasz Trzciński, Przemysław Spurek, Maciej Zięba
This makes the GP posterior locally non-Gaussian, therefore we name our method Non-Gaussian Gaussian Processes (NGGPs).
1 code implementation • 12 Oct 2021 • Magdalena Proszewska, Marcin Mazur, Tomasz Trzciński, Przemysław Spurek
Recently introduced implicit field representations offer an effective way of generating 3D object shapes.
no code implementations • 5 Oct 2021 • Łukasz Struski, Paweł Morkisz, Przemysław Spurek, Samuel Rodriguez Bernabeu, Tomasz Trzciński
In this work, we leverage efficient processing operations that can be run in parallel on modern Graphical Processing Units (GPUs), predominant computing architecture used e. g. in deep learning, to reduce the computational burden of computing matrix decompositions.
no code implementations • 10 Aug 2021 • Marcin Sendera, Marek Śmieja, Łukasz Maziarka, Łukasz Struski, Przemysław Spurek, Jacek Tabor
We propose FlowSVDD -- a flow-based one-class classifier for anomaly/outliers detection that realizes a well-known SVDD principle using deep learning tools.
1 code implementation • 3 Aug 2021 • Ivan Kostiuk, Przemysław Stachura, Sławomir K. Tadeja, Tomasz Trzciński, Przemysław Spurek
In such a case, we have to ``understand'' the object's composition and coloring scheme of each part.
1 code implementation • 11 Feb 2021 • Przemysław Spurek, Sebastian Winczowski, Maciej Zięba, Tomasz Trzciński, Kacper Kania, Marcin Mazur
This way, we can sample a mesh quad on that sphere and project it back onto the object's manifold.
1 code implementation • 11 Feb 2021 • Przemysław Spurek, Artur Kasymov, Marcin Mazur, Diana Janik, Sławomir Tadeja, Łukasz Struski, Jacek Tabor, Tomasz Trzciński
In this work, we reformulate the problem of point cloud completion into an object hallucination task.
no code implementations • 30 Nov 2020 • Maciej Zięba, Marcin Przewięźlikowski, Marek Śmieja, Jacek Tabor, Tomasz Trzcinski, Przemysław Spurek
Predicting future states or actions of a given system remains a fundamental, yet unsolved challenge of intelligence, especially in the scope of complex and non-deterministic scenarios, such as modeling behavior of humans.
no code implementations • 26 Oct 2020 • Tomasz Danel, Marek Śmieja, Łukasz Struski, Przemysław Spurek, Łukasz Maziarka
We investigate the problem of training neural networks from incomplete images without replacing missing values.
no code implementations • 6 Oct 2020 • Łukasz Maziarka, Marek Śmieja, Marcin Sendera, Łukasz Struski, Jacek Tabor, Przemysław Spurek
We propose OneFlow - a flow-based one-class classifier for anomaly (outlier) detection that finds a minimal volume bounding region.
1 code implementation • 15 Sep 2020 • Szymon Knop, Marcin Mazur, Przemysław Spurek, Jacek Tabor, Igor Podolak
First, an autoencoder based architecture, using kernel measures, is built to model a manifold of data.
no code implementations • 17 Jun 2020 • Bartosz Wójcik, Paweł Morawiecki, Marek Śmieja, Tomasz Krzyżek, Przemysław Spurek, Jacek Tabor
We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network.
1 code implementation • 15 Jun 2020 • Przemysław Spurek, Maciej Zięba, Jacek Tabor, Tomasz Trzciński
To that end, we devise a generative model that uses a hypernetwork to return the weights of a Continuous Normalizing Flows (CNF) target network.
1 code implementation • 18 Feb 2020 • Łukasz Struski, Szymon Knop, Jacek Tabor, Wiktor Daniec, Przemysław Spurek
In the paper we construct a fully convolutional GAN model: LocoGAN, which latent space is given by noise-like images of possibly different resolutions.
2 code implementations • ICML 2020 • Przemysław Spurek, Sebastian Winczowski, Jacek Tabor, Maciej Zamorski, Maciej Zięba, Tomasz Trzciński
The main idea of our HyperCloud method is to build a hyper network that returns weights of a particular neural network (target network) trained to map points from a uniform unit ball distribution into a 3D shape.
1 code implementation • 13 Jan 2020 • Andrzej Bedychaj, Przemysław Spurek, Aleksandra Nowak, Jacek Tabor
Independent Component Analysis (ICA) aims to find a coordinate system in which the components of the data are independent.
2 code implementations • 11 Sep 2019 • Tomasz Danel, Przemysław Spurek, Jacek Tabor, Marek Śmieja, Łukasz Struski, Agnieszka Słowik, Łukasz Maziarka
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds.
1 code implementation • 3 Jun 2019 • Paweł Morawiecki, Przemysław Spurek, Marek Śmieja, Jacek Tabor
We present an efficient technique, which allows to train classification networks which are verifiably robust against norm-bounded adversarial attacks.
no code implementations • 31 May 2019 • Andrzej Bedychaj, Przemysław Spurek, Łukasz Struskim, Jacek Tabor
Independent Component Analysis (ICA) - one of the basic tools in data analysis - aims to find a coordinate system in which the components of the data are independent.
1 code implementation • 30 May 2019 • Przemysław Spurek, Szymon Knop, Jacek Tabor, Igor Podolak, Bartosz Wójcik
Several deep models, esp.
no code implementations • 1 Mar 2019 • Przemysław Spurek, Aleksandra Nowak, Jacek Tabor, Łukasz Maziarka, Stanisław Jastrzębski
Non-linear source separation is a challenging open problem with many applications.
no code implementations • 29 Jan 2019 • Szymon Knop, Marcin Mazur, Jacek Tabor, Igor Podolak, Przemysław Spurek
In this paper we discuss a class of AutoEncoder based generative models based on one dimensional sliced approach.
1 code implementation • 3 Oct 2018 • Łukasz Maziarka, Marek Śmieja, Aleksandra Nowak, Jacek Tabor, Łukasz Struski, Przemysław Spurek
Global pooling, such as max- or sum-pooling, is one of the key ingredients in deep neural networks used for processing images, texts, graphs and other types of structured data.
no code implementations • 27 Sep 2018 • Łukasz Maziarka, Marek Śmieja, Aleksandra Nowak, Jacek Tabor, Łukasz Struski, Przemysław Spurek
We construct a general unified framework for learning representation of structured data, i. e. data which cannot be represented as the fixed-length vectors (e. g. sets, graphs, texts or images of varying sizes).
2 code implementations • ICLR 2019 • Szymon Knop, Jacek Tabor, Przemysław Spurek, Igor Podolak, Marcin Mazur, Stanisław Jastrzębski
The crucial new ingredient is the introduction of a new (Cramer-Wold) metric in the space of densities, which replaces the Wasserstein metric used in SWAE.
1 code implementation • NeurIPS 2018 • Marek Smieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, Przemysław Spurek
We propose a general, theoretically justified mechanism for processing missing data by neural networks.
no code implementations • 19 Aug 2015 • Jacek Tabor, Przemysław Spurek, Konrad Kamieniecki, Marek Śmieja, Krzysztof Misztal
The R Package CEC performs clustering based on the cross-entropy clustering (CEC) method, which was recently developed with the use of information theory.