Search Results for author: Qi Chang

Found 7 papers, 4 papers with code

Modality Bank: Learn multi-modality images across data centers without sharing medical data

no code implementations22 Jan 2022 Qi Chang, Hui Qu, Zhennan Yan, Yunhe Gao, Lohendran Baskaran, Dimitris Metaxas

Multi-modality images have been widely used and provide comprehensive information for medical image analysis.

Training Federated GANs with Theoretical Guarantees: A Universal Aggregation Approach

1 code implementation9 Feb 2021 Yikai Zhang, Hui Qu, Qi Chang, Huidong Liu, Dimitris Metaxas, Chao Chen

A federatedGAN jointly trains a centralized generator and multiple private discriminators hosted at different sites.

Federated Learning

Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without Sharing Private Information

no code implementations15 Dec 2020 Qi Chang, Zhennan Yan, Lohendran Baskaran, Hui Qu, Yikai Zhang, Tong Zhang, Shaoting Zhang, Dimitris N. Metaxas

As deep learning technologies advance, increasingly more data is necessary to generate general and robust models for various tasks.

Learn distributed GAN with Temporary Discriminators

1 code implementation ECCV 2020 Hui Qu, Yikai Zhang, Qi Chang, Zhennan Yan, Chao Chen, Dimitris Metaxas

Our proposed method tackles the challenge of training GAN in the federated learning manner: How to update the generator with a flow of temporary discriminators?

Federated Learning

Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data

1 code implementation CVPR 2020 Qi Chang, Hui Qu, Yikai Zhang, Mert Sabuncu, Chao Chen, Tong Zhang, Dimitris Metaxas

In this paper, we propose a data privacy-preserving and communication efficient distributed GAN learning framework named Distributed Asynchronized Discriminator GAN (AsynDGAN).

Non-Local Graph-Based Prediction For Reversible Data Hiding In Images

no code implementations20 Feb 2018 Qi Chang, Gene Cheung, Yao Zhao, Xiaolong Li, Rongrong Ni

If sufficiently smooth, we pose a maximum a posteriori (MAP) problem using either a quadratic Laplacian regularizer or a graph total variation (GTV) term as signal prior.

Cannot find the paper you are looking for? You can Submit a new open access paper.