no code implementations • 22 Jan 2022 • Qi Chang, Hui Qu, Zhennan Yan, Yunhe Gao, Lohendran Baskaran, Dimitris Metaxas
Multi-modality images have been widely used and provide comprehensive information for medical image analysis.
1 code implementation • CVPR 2021 • Meng Ye, Mikael Kanski, Dong Yang, Qi Chang, Zhennan Yan, Qiaoying Huang, Leon Axel, Dimitris Metaxas
Cardiac tagging magnetic resonance imaging (t-MRI) is the gold standard for regional myocardium deformation and cardiac strain estimation.
1 code implementation • 9 Feb 2021 • Yikai Zhang, Hui Qu, Qi Chang, Huidong Liu, Dimitris Metaxas, Chao Chen
A federatedGAN jointly trains a centralized generator and multiple private discriminators hosted at different sites.
no code implementations • 15 Dec 2020 • Qi Chang, Zhennan Yan, Lohendran Baskaran, Hui Qu, Yikai Zhang, Tong Zhang, Shaoting Zhang, Dimitris N. Metaxas
As deep learning technologies advance, increasingly more data is necessary to generate general and robust models for various tasks.
1 code implementation • ECCV 2020 • Hui Qu, Yikai Zhang, Qi Chang, Zhennan Yan, Chao Chen, Dimitris Metaxas
Our proposed method tackles the challenge of training GAN in the federated learning manner: How to update the generator with a flow of temporary discriminators?
1 code implementation • CVPR 2020 • Qi Chang, Hui Qu, Yikai Zhang, Mert Sabuncu, Chao Chen, Tong Zhang, Dimitris Metaxas
In this paper, we propose a data privacy-preserving and communication efficient distributed GAN learning framework named Distributed Asynchronized Discriminator GAN (AsynDGAN).
no code implementations • 20 Feb 2018 • Qi Chang, Gene Cheung, Yao Zhao, Xiaolong Li, Rongrong Ni
If sufficiently smooth, we pose a maximum a posteriori (MAP) problem using either a quadratic Laplacian regularizer or a graph total variation (GTV) term as signal prior.