no code implementations • 30 Oct 2024 • Xiangcen Wu, Yipei Wang, Qianye Yang, Natasha Thorley, Shonit Punwani, Veeru Kasivisvanathan, Ester Bonmati, Yipeng Hu
Based on the presented experiments from two clinical data sets, consisting of histopathology-labelled MR images from more than 800 and 500 patients in the respective UCLA and UCL PROMIS studies, we show that the proposed strategy can improve the diagnostic accuracy, by augmenting the radiologist reading of the MR imaging.
1 code implementation • 8 Jul 2024 • Qi Li, Ziyi Shen, Qianye Yang, Dean C. Barratt, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu
Motivated by a) the observed nonrigid deformation due to soft tissue motion during scanning, and b) the highly sensitive prediction of rigid transformation, this study investigates the methods and their benefits in predicting nonrigid transformations for reconstructing 3D US.
no code implementations • 16 Feb 2024 • Yiwen Li, Yunguan Fu, Iani J. M. B. Gayo, Qianye Yang, Zhe Min, Shaheer U. Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J. Clarkson, Dean C. Barratt, Victor A. Prisacariu, Yipeng Hu
For training registration networks, weak supervision from segmented corresponding regions-of-interest (ROIs) have been proven effective for (a) supplementing unsupervised methods, and (b) being used independently in registration tasks in which unsupervised losses are unavailable or ineffective.
no code implementations • 22 Aug 2023 • Weixi Yi, Vasilis Stavrinides, Zachary M. C. Baum, Qianye Yang, Dean C. Barratt, Matthew J. Clarkson, Yipeng Hu, Shaheer U. Saeed
We propose Boundary-RL, a novel weakly supervised segmentation method that utilises only patch-level labels for training.
no code implementations • 17 Jul 2023 • Wen Yan, Bernard Chiu, Ziyi Shen, Qianye Yang, Tom Syer, Zhe Min, Shonit Punwani, Mark Emberton, David Atkinson, Dean C. Barratt, Yipeng Hu
One of the distinct characteristics in radiologists' reading of multiparametric prostate MR scans, using reporting systems such as PI-RADS v2. 1, is to score individual types of MR modalities, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced, and then combine these image-modality-specific scores using standardised decision rules to predict the likelihood of clinically significant cancer.
no code implementations • 12 Mar 2023 • Qian Li, Yunguan Fu, Qianye Yang, Zhijiang Du, Hongjian Yu, Yipeng Hu
Graph neural networks (GNNs) have been proposed for medical image segmentation, by predicting anatomical structures represented by graphs of vertices and edges.
no code implementations • 3 Mar 2023 • Shaheer U. Saeed, Tom Syer, Wen Yan, Qianye Yang, Mark Emberton, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Yipeng Hu
For the first time, we evaluate the realism of the generated pathology by blind expert identification of the presence of suspected lesions, where we find that the clinician performs similarly for both real and synthesised images, with a 2. 9 percentage point difference in lesion identification accuracy between real and synthesised images, demonstrating the potentials in radiological training purposes.
1 code implementation • 12 Sep 2022 • Yiwen Li, Yunguan Fu, Iani Gayo, Qianye Yang, Zhe Min, Shaheer Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J. Clarkson, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The prowess that makes few-shot learning desirable in medical image analysis is the efficient use of the support image data, which are labelled to classify or segment new classes, a task that otherwise requires substantially more training images and expert annotations.
1 code implementation • 26 Jul 2022 • Qianye Yang, David Atkinson, Yunguan Fu, Tom Syer, Wen Yan, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Tom Vercauteren, Yipeng Hu
In this work, we consider the task of pairwise cross-modality image registration, which may benefit from exploiting additional images available only at training time from an additional modality that is different to those being registered.
no code implementations • 13 Jul 2022 • Ziyi Shen, Qianye Yang, Yuming Shen, Francesco Giganti, Vasilis Stavrinides, Richard Fan, Caroline Moore, Mirabela Rusu, Geoffrey Sonn, Philip Torr, Dean Barratt, Yipeng Hu
Image registration is useful for quantifying morphological changes in longitudinal MR images from prostate cancer patients.
no code implementations • 30 Mar 2022 • Wen Yan, Qianye Yang, Tom Syer, Zhe Min, Shonit Punwani, Mark Emberton, Dean C. Barratt, Bernard Chiu, Yipeng Hu
However, the differences in false-positives and false-negatives, between the actual errors and the perceived counterparts if DSC is used, can be as high as 152 and 154, respectively, out of the 357 test set lesions.
1 code implementation • 27 Mar 2022 • Shaheer U. Saeed, Yunguan Fu, Vasilis Stavrinides, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, J. Alison Noble, Dean C. Barratt, Yipeng Hu
In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with respect to a given downstream task, or task amenability.
1 code implementation • 20 Feb 2022 • Shaheer U. Saeed, Wen Yan, Yunguan Fu, Francesco Giganti, Qianye Yang, Zachary M. C. Baum, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, Mark Emberton, Dean C. Barratt, Yipeng Hu
This allows for the trained IQA controller to measure the impact an image has on the target task performance, when this task is performed using the predictor, e. g. segmentation and classification neural networks in modern clinical applications.
no code implementations • 17 Jan 2022 • Yiwen Li, Yunguan Fu, Qianye Yang, Zhe Min, Wen Yan, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The ability to adapt medical image segmentation networks for a novel class such as an unseen anatomical or pathological structure, when only a few labelled examples of this class are available from local healthcare providers, is sought-after.
1 code implementation • 31 Jul 2021 • Shaheer U. Saeed, Yunguan Fu, Vasilis Stavrinides, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, J. Alison Noble, Dean C. Barratt, Yipeng Hu
Using 6644 clinical ultrasound images from 249 prostate cancer patients, our results for image classification and segmentation tasks show that the proposed IQA method can be adapted using data with as few as respective 19. 7% and 29. 6% expert-reviewed consensus labels and still achieve comparable IQA and task performance, which would otherwise require a training dataset with 100% expert labels.
1 code implementation • 28 Jul 2021 • Liam F Chalcroft, Jiongqi Qu, Sophie A Martin, Iani JMB Gayo, Giulio V Minore, Imraj RD Singh, Shaheer U Saeed, Qianye Yang, Zachary MC Baum, Andre Altmann, Yipeng Hu
When developing deep neural networks for segmenting intraoperative ultrasound images, several practical issues are encountered frequently, such as the presence of ultrasound frames that do not contain regions of interest and the high variance in ground-truth labels.
no code implementations • 4 Jun 2021 • Zhe Min, Fernando J. Bianco, Qianye Yang, Rachael Rodell, Wen Yan, Dean Barratt, Yipeng Hu
Prostate cancer (PCa) is one of the leading causes of death for men worldwide.
no code implementations • 15 Feb 2021 • Shaheer U. Saeed, Yunguan Fu, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, Dean C. Barratt, Yipeng Hu
In this paper, we consider a type of image quality assessment as a task-specific measurement, which can be used to select images that are more amenable to a given target task, such as image classification or segmentation.
no code implementations • 16 Jan 2021 • Qianye Yang, Tom Vercauteren, Yunguan Fu, Francesco Giganti, Nooshin Ghavami, Vasilis Stavrinides, Caroline Moore, Matt Clarkson, Dean Barratt, Yipeng Hu
Organ morphology is a key indicator for prostate disease diagnosis and prognosis.
1 code implementation • 4 Nov 2020 • Yunguan Fu, Nina Montaña Brown, Shaheer U. Saeed, Adrià Casamitjana, Zachary M. C. Baum, Rémi Delaunay, Qianye Yang, Alexander Grimwood, Zhe Min, Stefano B. Blumberg, Juan Eugenio Iglesias, Dean C. Barratt, Ester Bonmati, Daniel C. Alexander, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu
DeepReg (https://github. com/DeepRegNet/DeepReg) is a community-supported open-source toolkit for research and education in medical image registration using deep learning.
no code implementations • 29 Aug 2020 • Qianye Yang, Yunguan Fu, Francesco Giganti, Nooshin Ghavami, Qingchao Chen, J. Alison Noble, Tom Vercauteren, Dean Barratt, Yipeng Hu
Morphological analysis of longitudinal MR images plays a key role in monitoring disease progression for prostate cancer patients, who are placed under an active surveillance program.
no code implementations • 22 Jan 2018 • Qianye Yang, Nannan Li, Zixu Zhao, Xingyu Fan, Eric I-Chao Chang, Yan Xu
Based on our proposed framework, we first propose a method for cross-modality registration by fusing the deformation fields to adopt the cross-modality information from translated modalities.