Search Results for author: Qianyu He

Found 25 papers, 13 papers with code

Seed1.5-Thinking: Advancing Superb Reasoning Models with Reinforcement Learning

no code implementations10 Apr 2025 ByteDance Seed, :, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, Yufeng Yuan, Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi Zhang, Ruofei Zhu, Zhecheng An, Zhihao Bai, Yu Bao, Xingyan Bin, Jiangjie Chen, Feng Chen, Hongmin Chen, Riwei Chen, Liangqiang Chen, Zixin Chen, Jinsong Chen, Siyan Chen, Kaiyuan Chen, Zhi Chen, Jin Chen, Jiecao Chen, Jinxin Chi, Weinan Dai, Ning Dai, Jiahui Dai, Shihan Dou, Yantao Du, Zhengyin Du, Jianhui Duan, Chen Dun, Ting-Han Fan, Jiazhan Feng, Junda Feng, Ziyuan Feng, Yuwei Fu, Wenqi Fu, Hanjie Fu, Hao Ge, Hongyi Guo, Mingji Han, Li Han, Wenhao Hao, Xintong Hao, Qianyu He, Jerry He, Feng He, Wen Heng, Zehua Hong, Qi Hou, Liang Hu, Shengding Hu, Nan Hu, Kai Hua, Qi Huang, Ziyue Huang, Hongzhi Huang, Zihao Huang, Ting Huang, Wenhao Huang, Wei Jia, Bin Jia, Xiaoying Jia, Yuhua Jiang, Haobin Jiang, Ziheng Jiang, Kaihua Jiang, Chengquan Jiang, Jianpeng Jiao, Xiaoran Jin, Xing Jin, Xunhao Lai, Xiang Li, Liyi Li, Hongkai Li, Zheng Li, Shengxian Wan, Ya Wang, Yunshui Li, Chenggang Li, Niuniu Li, Siyu Li, Xi Li, Xiao Li, Aoyan Li, Yuntao Li, Nianning Liang, Xinnian Liang, Haibin Lin, Weijian Lin, Ye Lin, Zhicheng Liu, Guanlin Liu, Chenxiao Liu, Yan Liu, Gaohong Liu, Juncai Liu, Chundian Liu, Deyi Liu, Kaibo Liu, Siyao Liu, Qi Liu, Yongfei Liu, Kang Liu, Gan Liu, Boyi Liu, Rui Long, Weiqiang Lou, Chenwei Lou, Xiang Luo, Yao Luo, Caiping Lv, Heyang Lv, Bole Ma, Qianli Ma, Hongzhi Ma, Yiyuan Ma, Jin Ma, Wenchang Ma, Tingting Ma, Chen Mao, Qiyang Min, Zhe Nan, Guanghan Ning, Jinxiang Ou, Haojie Pan, Renming Pang, Yanghua Peng, Tao Peng, Lihua Qian, Mu Qiao, Meng Qu, Cheng Ren, Hongbin Ren, Yong Shan, Wei Shen, Ke Shen, Kai Shen, Guangming Sheng, Jinlong Shi, Wenlei Shi, Guang Shi, Shuai Shuai Cao, Yuxin Song, Zuquan Song, Jing Su, Yifan Sun, Tao Sun, Zewei Sun, Borui Wan, Xiaohui Wang, Xi Wang, Shuguang Wang, Jun Wang, Qinlong Wang, Chenyuan Wang, Shuai Wang, Zihan Wang, Changbao Wang, Jiaqiang Wang, Shihang Wang, Xuwu Wang, Zaiyuan Wang, Yuxuan Wang, Wenqi Wang, Taiqing Wang, Chengzhi Wei, Houmin Wei, Ziyun Wei, Shufa Wei, Zheng Wu, Yonghui Wu, Yangjun Wu, Bohong Wu, Shuang Wu, Jingqiao Wu, Ning Wu, Shuangzhi Wu, Jianmin Wu, Chenguang Xi, Fan Xia, Yuqiao Xian, Liang Xiang, Boren Xiang, Bowen Xiao, Zhen Xiao, Xia Xiao, Yongsheng Xiao, Chao Xin, Shulin Xin, Yuwen Xiong, Jingjing Xu, Ziwen Xu, Chenyin Xu, Jiayi Xu, Yifan Xu, Wei Xu, Yufei Xu, Shikun Xu, Shipeng Yan, Shen Yan, Qingping Yang, Xi Yang, Tianhao Yang, Yuehang Yang, Yuan Yang, Ximing Yang, Zeyu Yang, Guang Yang, Yifan Yang, Xuesong Yao, Bairen Yi, Fan Yin, Jianian Yin, Ziqiang Ying, Xiangyu Yu, Hongli Yu, Song Yu, Menghan Yu, Huan Yu, Siyu Yuan, Jun Yuan, Yutao Zeng, Tianyang Zhan, Zheng Zhang, Yun Zhang, Mofan Zhang, Wang Zhang, Ru Zhang, Zhi Zhang, Tianqi Zhang, Xinyi Zhang, Zhexi Zhang, Sijun Zhang, Wenqiang Zhang, Xiangxiang Zhang, Yongtao Zhang, Yuyu Zhang, Ge Zhang, He Zhang, Yue Zhang, Renjie Zheng, Ningxin Zheng, Zhuolin Zheng, Yaowei Zheng, Chen Zheng, Xiaoyun Zhi, Wanjun Zhong, Cheng Zhong, Zheng Zhong, Baoquan Zhong, Xun Zhou, Na Zhou, Huan Zhou, Hang Zhu, Defa Zhu, Wenjia Zhu, Lei Zuo

We introduce Seed1. 5-Thinking, capable of reasoning through thinking before responding, resulting in improved performance on a wide range of benchmarks.

Mixture-of-Experts reinforcement-learning +1

Order Matters: Investigate the Position Bias in Multi-constraint Instruction Following

1 code implementation24 Feb 2025 Jie Zeng, Qianyu He, Qingyu Ren, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu

Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs).

Instruction Following Position

Application of machine learning algorithm in temperature field reconstruction

no code implementations18 Feb 2025 Qianyu He, Huaiwei Sun, Yubo Li, Zhiwen You, Qiming Zheng, Yinghan Huang, Sipeng Zhu, Fengyu Wang

To address this, the study employs Proper Orthogonal Decomposition (POD) and sparse representation methods to reconstruct the temperature field based on temperature data from a limited number of local measurement points.

Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models

no code implementations9 Jan 2025 Qingyu Ren, Jie Zeng, Qianyu He, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu

It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints.

QUILL: Quotation Generation Enhancement of Large Language Models

1 code implementation6 Nov 2024 Jin Xiao, Bowei Zhang, Qianyu He, Jiaqing Liang, Feng Wei, Jinglei Chen, Zujie Liang, Deqing Yang, Yanghua Xiao

To improve the LLMs' quotation generation abilities, we construct a bilingual knowledge base that is broad in scope and rich in dimensions, containing up to 32, 022 quotes.

Reranking

Think Thrice Before You Act: Progressive Thought Refinement in Large Language Models

no code implementations17 Oct 2024 Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Sirui Xia, Haoran Guo, Jiaqing Liang, Zulong Chen, Liangyue Li, Yanghua Xiao

To address these limitations, we propose Progressive Thought Refinement (PTR), a framework that enables LLMs to refine their responses progressively.

Avg

From Complex to Simple: Enhancing Multi-Constraint Complex Instruction Following Ability of Large Language Models

1 code implementation24 Apr 2024 Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, Yanghua Xiao

It is imperative for Large language models (LLMs) to follow instructions with elaborate requirements (i. e. Complex Instructions Following).

Instruction Following

Reason from Fallacy: Enhancing Large Language Models' Logical Reasoning through Logical Fallacy Understanding

no code implementations4 Apr 2024 Yanda Li, Dixuan Wang, Jiaqing Liang, Guochao Jiang, Qianyu He, Yanghua Xiao, Deqing Yang

Large Language Models (LLMs) have demonstrated good performance in many reasoning tasks, but they still struggle with some complicated reasoning tasks including logical reasoning.

Logical Fallacies Logical Reasoning

Small Language Model Can Self-correct

no code implementations14 Jan 2024 Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, Yanghua Xiao

In this paper, we introduce the \underline{I}ntrinsic \underline{S}elf-\underline{C}orrection (ISC) in generative language models, aiming to correct the initial output of LMs in a self-triggered manner, even for those small LMs with 6 billion parameters.

Language Modeling Language Modelling +2

Enhancing Quantitative Reasoning Skills of Large Language Models through Dimension Perception

no code implementations29 Dec 2023 Yuncheng Huang, Qianyu He, Jiaqing Liang, Sihang Jiang, Yanghua Xiao, Yunwen Chen

Hence, we present a framework to enhance the quantitative reasoning ability of language models based on dimension perception.

KnowledGPT: Enhancing Large Language Models with Retrieval and Storage Access on Knowledge Bases

no code implementations17 Aug 2023 Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing Liang, Qianyu He, Zhouhong Gu, Yanghua Xiao, Wei Wang

Large language models (LLMs) have demonstrated impressive impact in the field of natural language processing, but they still struggle with several issues regarding, such as completeness, timeliness, faithfulness and adaptability.

Retrieval World Knowledge

MAPS-KB: A Million-scale Probabilistic Simile Knowledge Base

2 code implementations10 Dec 2022 Qianyu He, Xintao Wang, Jiaqing Liang, Yanghua Xiao

The ability to understand and generate similes is an imperative step to realize human-level AI.

Knowledge Base Construction

Language Models as Knowledge Embeddings

1 code implementation25 Jun 2022 Xintao Wang, Qianyu He, Jiaqing Liang, Yanghua Xiao

In this paper, we propose LMKE, which adopts Language Models to derive Knowledge Embeddings, aiming at both enriching representations of long-tail entities and solving problems of prior description-based methods.

Contrastive Learning Link Prediction +1

Can Pre-trained Language Models Interpret Similes as Smart as Human?

1 code implementation ACL 2022 Qianyu He, Sijie Cheng, Zhixu Li, Rui Xie, Yanghua Xiao

In this paper, we investigate the ability of PLMs in simile interpretation by designing a novel task named Simile Property Probing, i. e., to let the PLMs infer the shared properties of similes.

Sentiment Analysis Sentiment Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.