Search Results for author: Qing Jiang

Found 6 papers, 4 papers with code

T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy

1 code implementation21 Mar 2024 Qing Jiang, Feng Li, Zhaoyang Zeng, Tianhe Ren, Shilong Liu, Lei Zhang

Recognizing the complementary strengths and weaknesses of both text and visual prompts, we introduce T-Rex2 that synergizes both prompts within a single model through contrastive learning.

Contrastive Learning Descriptive +3

Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks

1 code implementation25 Jan 2024 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing Jiang, Lei Zhang

We introduce Grounded SAM, which uses Grounding DINO as an open-set object detector to combine with the segment anything model (SAM).


T-Rex: Counting by Visual Prompting

no code implementations22 Nov 2023 Qing Jiang, Feng Li, Tianhe Ren, Shilong Liu, Zhaoyang Zeng, Kent Yu, Lei Zhang

Guided by the visual feedback from T-Rex, users can also interactively refine the counting results by prompting on missing or falsely-detected objects.

Object Object Counting +4

Visual In-Context Prompting

3 code implementations22 Nov 2023 Feng Li, Qing Jiang, Hao Zhang, Tianhe Ren, Shilong Liu, Xueyan Zou, Huaizhe xu, Hongyang Li, Chunyuan Li, Jianwei Yang, Lei Zhang, Jianfeng Gao

In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain.

Segmentation Visual Prompting

Revisiting Scene Text Recognition: A Data Perspective

1 code implementation ICCV 2023 Qing Jiang, Jiapeng Wang, Dezhi Peng, Chongyu Liu, Lianwen Jin

To this end, we consolidate a large-scale real STR dataset, namely Union14M, which comprises 4 million labeled images and 10 million unlabeled images, to assess the performance of STR models in more complex real-world scenarios.

Scene Text Recognition

Testing the martingale difference hypothesis in high dimension

no code implementations11 Sep 2022 Jinyuan Chang, Qing Jiang, Xiaofeng Shao

In this paper, we consider testing the martingale difference hypothesis for high-dimensional time series.

Time Series Time Series Analysis +2

Cannot find the paper you are looking for? You can Submit a new open access paper.