1 code implementation • 15 Dec 2020 • Qingfu Wan, Oliver Lu
For this goal, we design an end-to-end system that uses neural style transfer for pose regression.
no code implementations • ECCV 2020 • Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, Mingxiu Chen, Boshen Zhang, Fu Xiong, Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weiting Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee, Angela Yao, Weiguo Zhou, Sijia Mei, Yun-hui Liu, Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel, Romain Brégier, Grégory Rogez, Vincent Lepetit, Tae-Kyun Kim
To address these issues, we designed a public challenge (HANDS'19) to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.
no code implementations • 20 May 2019 • Qingfu Wan, Weichao Qiu, Alan L. Yuille
State-of-the-art 3D human pose estimation approaches typically estimate pose from the entire RGB image in a single forward run.
1 code implementation • CVPR 2018 • Shanxin Yuan, Guillermo Garcia-Hernando, Bjorn Stenger, Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz, Sina Honari, Liuhao Ge, Junsong Yuan, Xinghao Chen, Guijin Wang, Fan Yang, Kai Akiyama, Yang Wu, Qingfu Wan, Meysam Madadi, Sergio Escalera, Shile Li, Dongheui Lee, Iason Oikonomidis, Antonis Argyros, Tae-Kyun Kim
Official Torch7 implementation of "V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map", CVPR 2018
Ranked #5 on Hand Pose Estimation on HANDS 2017
no code implementations • 29 Nov 2017 • Qingfu Wan, Wei zhang, xiangyang xue
For the first time, we show that training regression network from skeleton map alone is capable of meeting the performance of state-of-theart 3D human pose estimation works.
1 code implementation • 22 Jun 2016 • Xingyi Zhou, Qingfu Wan, Wei zhang, xiangyang xue, Yichen Wei
For the first time, we show that embedding such a non-linear generative process in deep learning is feasible for hand pose estimation.