no code implementations • 5 Mar 2025 • Qinglin Liu, Zonglin Li, Xiaoqian Lv, Xin Sun, Ru Li, Shengping Zhang
In this paper, we explore a novel image matting task aimed at achieving efficient inference under various computational cost constraints, specifically FLOP limitations, using a single matting network.
no code implementations • 15 Jun 2024 • Ying Fu, Yu Li, ShaoDi You, Boxin Shi, Linwei Chen, Yunhao Zou, Zichun Wang, Yichen Li, Yuze Han, Yingkai Zhang, Jianan Wang, Qinglin Liu, Wei Yu, Xiaoqian Lv, Jianing Li, Shengping Zhang, Xiangyang Ji, Yuanpei Chen, Yuhan Zhang, Weihang Peng, Liwen Zhang, Zhe Xu, Dingyong Gou, Cong Li, Senyan Xu, Yunkang Zhang, Siyuan Jiang, Xiaoqiang Lu, Licheng Jiao, Fang Liu, Xu Liu, Lingling Li, Wenping Ma, Shuyuan Yang, Haiyang Xie, Jian Zhao, Shihua Huang, Peng Cheng, Xi Shen, Zheng Wang, Shuai An, Caizhi Zhu, Xuelong Li, Tao Zhang, Liang Li, Yu Liu, Chenggang Yan, Gengchen Zhang, Linyan Jiang, Bingyi Song, Zhuoyu An, Haibo Lei, Qing Luo, Jie Song, YuAn Liu, Haoyuan Zhang, Lingfeng Wang, Wei Chen, Aling Luo, Cheng Li, Jun Cao, Shu Chen, Zifei Dou, Xinyu Liu, Jing Zhang, Kexin Zhang, Yuting Yang, Xuejian Gou, Qinliang Wang, Yang Liu, Shizhan Zhao, Yanzhao Zhang, Libo Yan, Yuwei Guo, Guoxin Li, Qiong Gao, Chenyue Che, Long Sun, Xiang Chen, Hao Li, Jinshan Pan, Chuanlong Xie, Hongming Chen, Mingrui Li, Tianchen Deng, Jingwei Huang, Yufeng Li, Fei Wan, Bingxin Xu, Jian Cheng, Hongzhe Liu, Cheng Xu, Yuxiang Zou, Weiguo Pan, Songyin Dai, Sen Jia, Junpei Zhang, Puhua Chen, Qihang Li
The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies.
1 code implementation • 30 May 2024 • Qi Zhang, Guohua Geng, Longquan Yan, Pengbo Zhou, Zhaodi Li, Kang Li, Qinglin Liu
This adjustment enhances the structure for multi-head attention computation, leading to enhanced network performance and CBLA is a plug-and-play module.
1 code implementation • 3 Mar 2024 • Qinglin Liu, Shengping Zhang, Quanling Meng, Bineng Zhong, Peiqiang Liu, Hongxun Yao
Finally, an instance matting network decodes the image features and united semantics guidance to predict all instance-level alpha mattes.
1 code implementation • 28 Feb 2024 • Qinglin Liu, Xiaoqian Lv, Wei Yu, Changyong Guo, Shengping Zhang
However, existing matting methods are designed for specific objects or guidance, neglecting the common requirement of aggregating global and local contexts in image matting.
Ranked #3 on
Image Matting
on Distinctions-646
1 code implementation • 3 Apr 2023 • Qinglin Liu, Xiaoqian Lv, Quanling Meng, Zonglin Li, Xiangyuan Lan, Shuo Yang, Shengping Zhang, Liqiang Nie
Furthermore, AEMatter leverages a large image training strategy to assist the network in learning context aggregation from data.
Ranked #1 on
Image Matting
on Composition-1K
1 code implementation • 25 Sep 2021 • Qinglin Liu, Haozhe Xie, Shengping Zhang, Bineng Zhong, Rongrong Ji
Finally, we use the matting module which takes the image, trimap and context features to estimate the alpha matte.
Ranked #6 on
Image Matting
on Composition-1K
(using extra training data)