no code implementations • 27 Nov 2024 • Linwei Dong, Qingnan Fan, Yihong Guo, Zhonghao Wang, Qi Zhang, Jinwei Chen, Yawei Luo, Changqing Zou
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) task.
1 code implementation • 13 Oct 2024 • Guoqiang Liang, Qingnan Fan, Bingtao Fu, Jinwei Chen, Hong Gu, Lin Wang
In this paper, we propose a novel framework, namely AuthFace that achieves highly authentic face restoration results by exploring a face-oriented generative diffusion prior.
no code implementations • 25 Jun 2024 • Aoyang Liu, Qingnan Fan, Shuai Qin, Hong Gu, Yansong Tang
In this paper, we explore a novel task: learning the personalized identity prior for text-based non-rigid image editing.
1 code implementation • 18 Apr 2024 • Wei Wu, Qingnan Fan, Shuai Qin, Hong Gu, Ruoyu Zhao, Antoni B. Chan
Precise image editing with text-to-image models has attracted increasing interest due to their remarkable generative capabilities and user-friendly nature.
no code implementations • 10 Apr 2024 • Yanqi Ge, Jiaqi Liu, Qingnan Fan, Xi Jiang, Ye Huang, Shuai Qin, Hong Gu, Wen Li, Lixin Duan
In this work, we propose a novel solution to the text-driven style transfer task, namely, Adaptive Style Incorporation~(ASI), to achieve fine-grained feature-level style incorporation.
no code implementations • 27 Mar 2024 • Ruoyu Zhao, Qingnan Fan, Fei Kou, Shuai Qin, Hong Gu, Wei Wu, Pengcheng Xu, Mingrui Zhu, Nannan Wang, Xinbo Gao
Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization.
no code implementations • 20 Sep 2023 • Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, Wenping Wang
We present C$\cdot$ASE, an efficient and effective framework that learns conditional Adversarial Skill Embeddings for physics-based characters.
no code implementations • CVPR 2023 • Jiazhao Zhang, Liu Dai, Fanpeng Meng, Qingnan Fan, Xuelin Chen, Kai Xu, He Wang
However, leveraging 3D scene representation can be prohibitively unpractical for policy learning in this floor-level task, due to low sample efficiency and expensive computational cost.
no code implementations • 5 Jul 2022 • Yan Zhao, Ruihai Wu, Zhehuan Chen, Yourong Zhang, Qingnan Fan, Kaichun Mo, Hao Dong
It is essential yet challenging for future home-assistant robots to understand and manipulate diverse 3D objects in daily human environments.
no code implementations • CVPR 2022 • Kai Ye, Siyan Dong, Qingnan Fan, He Wang, Li Yi, Fei Xia, Jue Wang, Baoquan Chen
Previous approaches either choose the frontier as the goal position via a myopic solution that hinders the time efficiency, or maximize the long-term value via reinforcement learning to directly regress the goal position, but does not guarantee the complete map construction.
no code implementations • CVPR 2022 • Hanxiang Ren, Yanchao Yang, He Wang, Bokui Shen, Qingnan Fan, Youyi Zheng, C. Karen Liu, Leonidas J. Guibas
We describe a method to deal with performance drop in semantic segmentation caused by viewpoint changes within multi-camera systems, where temporally paired images are readily available, but the annotations may only be abundant for a few typical views.
no code implementations • 19 Dec 2021 • Mingxin Yu, Lin Shao, Zhehuan Chen, Tianhao Wu, Qingnan Fan, Kaichun Mo, Hao Dong
Part assembly is a typical but challenging task in robotics, where robots assemble a set of individual parts into a complete shape.
no code implementations • 1 Dec 2021 • Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas Guibas, Hao Dong
Perceiving and interacting with 3D articulated objects, such as cabinets, doors, and faucets, pose particular challenges for future home-assistant robots performing daily tasks in human environments.
1 code implementation • 29 Jul 2021 • Yanchao Yang, Hanxiang Ren, He Wang, Bokui Shen, Qingnan Fan, Youyi Zheng, C. Karen Liu, Leonidas Guibas
Furthermore, to resolve ambiguities in converting the semantic images to semantic labels, we treat the view transformation network as a functional representation of an unknown mapping implied by the color images and propose functional label hallucination to generate pseudo-labels in the target domain.
1 code implementation • ICCV 2021 • Yunze Liu, Qingnan Fan, Shanghang Zhang, Hao Dong, Thomas Funkhouser, Li Yi
Another approach is to concatenate all the modalities into a tuple and then contrast positive and negative tuple correspondences.
Ranked #76 on Semantic Segmentation on NYU Depth v2
no code implementations • ICLR 2022 • Ruihai Wu, Yan Zhao, Kaichun Mo, Zizheng Guo, Yian Wang, Tianhao Wu, Qingnan Fan, Xuelin Chen, Leonidas Guibas, Hao Dong
In this paper, we propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation, by predicting dense geometry-aware, interaction-aware, and task-aware visual action affordance and trajectory proposals.
no code implementations • CVPR 2021 • Lvmin Zhang, Xinrui Wang, Qingnan Fan, Yi Ji, Chunping Liu
To this end, we create a large-scale dataset with these three components annotated by artists in a human-in-the-loop manner.
1 code implementation • ICCV 2021 • Yijia Weng, He Wang, Qiang Zhou, Yuzhe Qin, Yueqi Duan, Qingnan Fan, Baoquan Chen, Hao Su, Leonidas J. Guibas
For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories.
no code implementations • 24 Dec 2020 • Yunze Liu, Li Yi, Shanghang Zhang, Qingnan Fan, Thomas Funkhouser, Hao Dong
Self-supervised representation learning is a critical problem in computer vision, as it provides a way to pretrain feature extractors on large unlabeled datasets that can be used as an initialization for more efficient and effective training on downstream tasks.
1 code implementation • CVPR 2021 • Siyan Dong, Qingnan Fan, He Wang, Ji Shi, Li Yi, Thomas Funkhouser, Baoquan Chen, Leonidas Guibas
Localizing the camera in a known indoor environment is a key building block for scene mapping, robot navigation, AR, etc.
1 code implementation • 8 Dec 2020 • Qihang Fang, Yingda Yin, Qingnan Fan, Fei Xia, Siyan Dong, Sheng Wang, Jue Wang, Leonidas Guibas, Baoquan Chen
These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale.
2 code implementations • 11 Oct 2020 • Ziyi Wu, Yueqi Duan, He Wang, Qingnan Fan, Leonidas J. Guibas
The former aims to recover the surface of point cloud through implicit function, while the latter encourages evenly-distributed points.
3 code implementations • NeurIPS 2020 • Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas Guibas, Hao Dong
Analogous to buying an IKEA furniture, given a set of 3D parts that can assemble a single shape, an intelligent agent needs to perceive the 3D part geometry, reason to propose pose estimations for the input parts, and finally call robotic planning and control routines for actuation.
no code implementations • 8 Dec 2019 • Yingda Yin, Qingnan Fan, Dong-Dong Chen, Yujie Wang, Angelica Aviles-Rivero, Ruoteng Li, Carola-Bibiane Schnlieb, Baoquan Chen
Reflections are very common phenomena in our daily photography, which distract people's attention from the scene behind the glass.
no code implementations • 23 Jul 2019 • Angelica I. Aviles-Rivero, Nicolas Papadakis, Ruoteng Li, Philip Sellars, Qingnan Fan, Robby T. Tan, Carola-Bibiane Schönlieb
The task of classifying X-ray data is a problem of both theoretical and clinical interest.
no code implementations • 11 Jul 2019 • Qingnan Fan, Dong-Dong Chen, Lu Yuan, Gang Hua, Nenghai Yu, Baoquan Chen
To overcome this limitation, we propose a new decoupled learning algorithm to learn from the operator parameters to dynamically adjust the weights of a deep network for image operators, denoted as the base network.
1 code implementation • 21 Nov 2018 • Dongdong Chen, Mingming He, Qingnan Fan, Jing Liao, Liheng Zhang, Dongdong Hou, Lu Yuan, Gang Hua
Image dehazing aims to recover the uncorrupted content from a hazy image.
Ranked #2 on Rain Removal on DID-MDN
1 code implementation • 7 Nov 2018 • Qingnan Fan, Jiaolong Yang, David Wipf, Baoquan Chen, Xin Tong
Image smoothing represents a fundamental component of many disparate computer vision and graphics applications.
1 code implementation • ECCV 2018 • Qingnan Fan, Dong-Dong Chen, Lu Yuan, Gang Hua, Nenghai Yu, Baoquan Chen
Many different deep networks have been used to approximate, accelerate or improve traditional image operators, such as image smoothing, super-resolution and denoising.
no code implementations • 29 May 2018 • Daniel Heydecker, Georg Maierhofer, Angelica I. Aviles-Rivero, Qingnan Fan, Dong-Dong Chen, Carola-Bibiane Schönlieb, Sabine Süsstrunk
Removing reflection artefacts from a single image is a problem of both theoretical and practical interest, which still presents challenges because of the massively ill-posed nature of the problem.
1 code implementation • ICCV 2017 • Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, David Wipf
This paper proposes a deep neural network structure that exploits edge information in addressing representative low-level vision tasks such as layer separation and image filtering.
no code implementations • CVPR 2018 • Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, David Wipf
While invaluable for many computer vision applications, decomposing a natural image into intrinsic reflectance and shading layers represents a challenging, underdetermined inverse problem.