1 code implementation • 30 Sep 2024 • Zhengren Wang, Qinhan Yu, Shida Wei, Zhiyu Li, Feiyu Xiong, Xiaoxing Wang, Simin Niu, Hao Liang, Wentao Zhang
Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses.
1 code implementation • 30 Jul 2024 • Zheng Liu, Hao Liang, Xijie Huang, Wentao Xiong, Qinhan Yu, Linzhuang Sun, Chong Chen, Conghui He, Bin Cui, Wentao Zhang
Crucially, our method's reliance on purely generated data ensures the preservation of privacy, achieving SoTA performance with just 100k data points (only 18% of the official dataset size).
3 code implementations • 29 Feb 2024 • Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang, Wentao Zhang, Jie Jiang, Bin Cui
We first classify RAG foundations according to how the retriever augments the generator, distilling the fundamental abstractions of the augmentation methodologies for various retrievers and generators.