1 code implementation • 17 Oct 2024 • Chenhao Zhang, Xi Feng, Yuelin Bai, Xinrun Du, Jinchang Hou, Kaixin Deng, Guangzeng Han, Qinrui Li, Bingli Wang, Jiaheng Liu, Xingwei Qu, Yifei Zhang, Qixuan Zhao, Yiming Liang, Ziqiang Liu, Feiteng Fang, Min Yang, Wenhao Huang, Chenghua Lin, Ge Zhang, Shiwen Ni
To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images.
1 code implementation • 1 Aug 2024 • Nan Xie, Yuelin Bai, Hengyuan Gao, Feiteng Fang, Qixuan Zhao, Zhijian Li, Ziqiang Xue, Liang Zhu, Shiwen Ni, Min Yang
In this paper, we present DeliLaw, a Chinese legal counselling system based on a large language model.
no code implementations • 9 Jun 2024 • Ziqiang Liu, Feiteng Fang, Xi Feng, Xinrun Du, Chenhao Zhang, Zekun Wang, Yuelin Bai, Qixuan Zhao, Liyang Fan, Chengguang Gan, Hongquan Lin, Jiaming Li, Yuansheng Ni, Haihong Wu, Yaswanth Narsupalli, Zhigang Zheng, Chengming Li, Xiping Hu, Ruifeng Xu, Xiaojun Chen, Min Yang, Jiaheng Liu, Ruibo Liu, Wenhao Huang, Ge Zhang, Shiwen Ni
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks.
1 code implementation • 25 Mar 2024 • Feiteng Fang, Liang Zhu, Min Yang, Xi Feng, Jinchang Hou, Qixuan Zhao, Chengming Li, Xiping Hu, Ruifeng Xu
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users.