no code implementations • 21 Apr 2025 • Xin Li, Xijun Wang, Bingchen Li, Kun Yuan, Yizhen Shao, Suhang Yao, Ming Sun, Chao Zhou, Radu Timofte, Zhibo Chen
In this work, we build the first benchmark dataset for short-form UGC Image Super-resolution in the wild, termed KwaiSR, intending to advance the research on developing image super-resolution algorithms for short-form UGC platforms.
1 code implementation • 20 Apr 2025 • Zheng Chen, Kai Liu, Jue Gong, Jingkai Wang, Lei Sun, Zongwei Wu, Radu Timofte, Yulun Zhang, Xiangyu Kong, Xiaoxuan Yu, Hyunhee Park, Suejin Han, Hakjae Jeon, Dafeng Zhang, Hyung-Ju Chun, Donghun Ryou, Inju Ha, Bohyung Han, Lu Zhao, Yuyi Zhang, Pengyu Yan, Jiawei Hu, Pengwei Liu, Fengjun Guo, Hongyuan Yu, Pufan Xu, Zhijuan Huang, Shuyuan Cui, Peng Guo, Jiahui Liu, Dongkai Zhang, Heng Zhang, Huiyuan Fu, Huadong Ma, Yanhui Guo, Sisi Tian, Xin Liu, Jinwen Liang, Jie Liu, Jie Tang, Gangshan Wu, Zeyu Xiao, Zhuoyuan Li, Yinxiang Zhang, Wenxuan Cai, Vijayalaxmi Ashok Aralikatti, Nikhil Akalwadi, G Gyaneshwar Rao, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Marcos V. Conde, Alejandro Merino, Bruno Longarela, Javier Abad, Weijun Yuan, Zhan Li, Zhanglu Chen, Boyang Yao, Aagam Jain, Milan Kumar Singh, Ankit Kumar, Shubh Kawa, Divyavardhan Singh, Anjali Sarvaiya, Kishor Upla, Raghavendra Ramachandra, Chia-Ming Lee, Yu-Fan Lin, Chih-Chung Hsu, Risheek V Hiremath, Yashaswini Palani, YuXuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Jingwei Liao, Yuqing Yang, Wenda Shao, Junyi Zhao, Qisheng Xu, Kele Xu, Sunder Ali Khowaja, Ik Hyun Lee, Snehal Singh Tomar, Rajarshi Ray, Klaus Mueller, Sachin Chaudhary, Surya Vashisth, Akshay Dudhane, Praful Hambarde, Satya Naryan Tazi, Prashant Patil, Santosh Kumar Vipparthi, Subrahmanyam Murala, Bilel Benjdira, Anas M. Ali, Wadii Boulila, Zahra Moammeri, Ahmad Mahmoudi-Aznaveh, Ali Karbasi, Hossein Motamednia, Liangyan Li, Guanhua Zhao, Kevin Le, Yimo Ning, Haoxuan Huang, Jun Chen
This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025.
1 code implementation • 20 Apr 2025 • Zheng Chen, Jingkai Wang, Kai Liu, Jue Gong, Lei Sun, Zongwei Wu, Radu Timofte, Yulun Zhang, Jianxing Zhang, Jinlong Wu, Jun Wang, Zheng Xie, Hakjae Jeon, Suejin Han, Hyung-Ju Chun, Hyunhee Park, Zhicun Yin, Junjie Chen, Ming Liu, Xiaoming Li, Chao Zhou, WangMeng Zuo, Weixia Zhang, Dingquan Li, Kede Ma, Yun Zhang, Zhuofan Zheng, Yuyue Liu, Shizhen Tang, Zihao Zhang, Yi Ning, Hao Jiang, Wenjie An, Kangmeng Yu, Chenyang Wang, Kui Jiang, Xianming Liu, Junjun Jiang, Yingfu Zhang, Gang He, Siqi Wang, Kepeng Xu, Zhenyang Liu, Changxin Zhou, Shanlan Shen, Yubo Duan, Yiang Chen, Jin Guo, Mengru Yang, Jen-Wei Lee, Chia-Ming Lee, Chih-Chung Hsu, Hu Peng, Chunming He
This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes.
no code implementations • 19 Apr 2025 • Bin Ren, Eduard Zamfir, Zongwei Wu, Yawei Li, Yidi Li, Danda Pani Paudel, Radu Timofte, Ming-Hsuan Yang, Luc van Gool, Nicu Sebe
Restoring any degraded image efficiently via just one model has become increasingly significant and impactful, especially with the proliferation of mobile devices.
1 code implementation • 17 Apr 2025 • Xin Li, Kun Yuan, Bingchen Li, Fengbin Guan, Yizhen Shao, Zihao Yu, Xijun Wang, Yiting Lu, Wei Luo, Suhang Yao, Ming Sun, Chao Zhou, Zhibo Chen, Radu Timofte, Yabin Zhang, Ao-Xiang Zhang, Tianwu Zhi, Jianzhao Liu, Yang Li, Jingwen Xu, Yiting Liao, Yushen Zuo, Mingyang Wu, Renjie Li, Shengyun Zhong, Zhengzhong Tu, Yufan Liu, Xiangguang Chen, Zuowei Cao, Minhao Tang, Shan Liu, Kexin Zhang, Jingfen Xie, Yan Wang, Kai Chen, Shijie Zhao, Yunchen Zhang, Xiangkai Xu, Hong Gao, Ji Shi, Yiming Bao, Xiugang Dong, Xiangsheng Zhou, Yaofeng Tu, Ying Liang, Yiwen Wang, Xinning Chai, Yuxuan Zhang, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Rong Xie, Li Song, Wei Sun, Kang Fu, Linhan Cao, Dandan Zhu, Kaiwei Zhang, Yucheng Zhu, ZiCheng Zhang, Menghan Hu, Xiongkuo Min, Guangtao Zhai, Zhi Jin, Jiawei Wu, Wei Wang, Wenjian Zhang, Yuhai Lan, Gaoxiong Yi, Hengyuan Na, Wang Luo, Di wu, MingYin Bai, Jiawang Du, Zilong Lu, Zhenyu Jiang, Hui Zeng, Ziguan Cui, Zongliang Gan, Guijin Tang, Xinglin Xie, Kehuan Song, Xiaoqiang Lu, Licheng Jiao, Fang Liu, Xu Liu, Puhua Chen, Ha Thu Nguyen, Katrien De Moor, Seyed Ali Amirshahi, Mohamed-Chaker Larabi, Qi Tang, Linfeng He, Zhiyong Gao, Zixuan Gao, Guohua Zhang, Zhiye Huang, Yi Deng, Qingmiao Jiang, Lu Chen, Yi Yang, Xi Liao, Nourine Mohammed Nadir, YuXuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Meiqin Liu, Chao Yao, Yao Zhao
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement.
1 code implementation • 17 Apr 2025 • Xin Li, Yeying Jin, Xin Jin, Zongwei Wu, Bingchen Li, YuFei Wang, Wenhan Yang, Yu Li, Zhibo Chen, Bihan Wen, Robby T. Tan, Radu Timofte, Qiyu Rong, Hongyuan Jing, Mengmeng Zhang, Jinglong Li, Xiangyu Lu, Yi Ren, YuTing Liu, Meng Zhang, Xiang Chen, Qiyuan Guan, Jiangxin Dong, Jinshan Pan, Conglin Gou, Qirui Yang, Fangpu Zhang, Yunlong Lin, Sixiang Chen, Guoxi Huang, Ruirui Lin, Yan Zhang, Jingyu Yang, Huanjing Yue, Jiyuan Chen, Qiaosi Yi, Hongjun Wang, Chenxi Xie, Shuai Li, Yuhui Wu, Kaiyi Ma, Jiakui Hu, Juncheng Li, Liwen Pan, Guangwei Gao, Wenjie Li, Zhenyu Jin, Heng Guo, Zhanyu Ma, YuBo Wang, Jinghua Wang, Wangzhi Xing, Anjusree Karnavar, Diqi Chen, Mohammad Aminul Islam, Hao Yang, Ruikun Zhang, Liyuan Pan, Qianhao Luo, XinCao, Han Zhou, Yan Min, Wei Dong, Jun Chen, Taoyi Wu, Weijia Dou, Yu Wang, Shengjie Zhao, Yongcheng Huang, Xingyu Han, Anyan Huang, Hongtao Wu, Hong Wang, Yefeng Zheng, Abhijeet Kumar, Aman Kumar, Marcos V. Conde, Paula Garrido, Daniel Feijoo, Juan C. Benito, Guanglu Dong, Xin Lin, Siyuan Liu, Tianheng Zheng, Jiayu Zhong, Shouyi Wang, Xiangtai Li, Lanqing Guo, Lu Qi, Chao Ren, Shuaibo Wang, Shilong Zhang, Wanyu Zhou, Yunze Wu, Qinzhong Tan, Jieyuan Pei, Zhuoxuan Li, Jiayu Wang, Haoyu Bian, Haoran Sun, Subhajit Paul, Ni Tang, Junhao Huang, Zihan Cheng, Hongyun Zhu, Yuehan Wu, Kaixin Deng, Hang Ouyang, Tianxin Xiao, Fan Yang, Zhizun Luo, Zeyu Xiao, Zhuoyuan Li, Nguyen Pham Hoang Le, An Dinh Thien, Son T. Luu, Kiet Van Nguyen, Ronghua Xu, Xianmin Tian, Weijian Zhou, Jiacheng Zhang, Yuqian Chen, Yihang Duan, Yujie Wu, Suresh Raikwar, Arsh Garg, Kritika, Jianhua Zheng, Xiaoshan Ma, Ruolin Zhao, Yongyu Yang, Yongsheng Liang, Guiming Huang, Qiang Li, Hongbin Zhang, Xiangyu Zheng, A. N. Rajagopalan
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images.
no code implementations • 16 Apr 2025 • Lei Sun, Hang Guo, Bin Ren, Luc van Gool, Radu Timofte, Yawei Li, Xiangyu Kong, Hyunhee Park, Xiaoxuan Yu, Suejin Han, Hakjae Jeon, Jia Li, Hyung-Ju Chun, Donghun Ryou, Inju Ha, Bohyung Han, JingYu Ma, Zhijuan Huang, Huiyuan Fu, Hongyuan Yu, Boqi Zhang, Jiawei Shi, Heng Zhang, Huadong Ma, Deepak Kumar Tyagi, Aman Kukretti, Gajender Sharma, Sriharsha Koundinya, Asim Manna, Jun Cheng, Shan Tan, Jun Liu, Jiangwei Hao, Jianping Luo, Jie Lu, Satya Narayan Tazi, Arnim Gautam, Aditi Pawar, Aishwarya Joshi, Akshay Dudhane, Praful Hambadre, Sachin Chaudhary, Santosh Kumar Vipparthi, Subrahmanyam Murala, Jiachen Tu, Nikhil Akalwadi, Vijayalaxmi Ashok Aralikatti, Dheeraj Damodar Hegde, G Gyaneshwar Rao, Jatin Kalal, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Zhenyuan Lin, Yubo Dong, Weikun Li, Anqi Li, Ang Gao, Weijun Yuan, Zhan Li, Ruting Deng, Yihang Chen, Yifan Deng, Zhanglu Chen, Boyang Yao, Shuling Zheng, Feng Zhang, Zhiheng Fu, Anas M. Ali, Bilel Benjdira, Wadii Boulila, Jan Seny, Pei Zhou, Jianhua Hu, K. L. Eddie Law, Jaeho Lee, M. J. Aashik Rasool, Abdur Rehman, SMA Sharif, Seongwan Kim, Alexandru Brateanu, Raul Balmez, Ciprian Orhei, Cosmin Ancuti, Zeyu Xiao, Zhuoyuan Li, Ziqi Wang, Yanyan Wei, Fei Wang, Kun Li, Shengeng Tang, Yunkai Zhang, Weirun Zhou, Haoxuan Lu
This paper presents an overview of the NTIRE 2025 Image Denoising Challenge ({\sigma} = 50), highlighting the proposed methodologies and corresponding results.
1 code implementation • 16 Apr 2025 • Lei Sun, Andrea Alfarano, Peiqi Duan, Shaolin Su, Kaiwei Wang, Boxin Shi, Radu Timofte, Danda Pani Paudel, Luc van Gool, Qinglin Liu, Wei Yu, Xiaoqian Lv, Lu Yang, Shuigen Wang, Shengping Zhang, Xiangyang Ji, Long Bao, Yuqiang Yang, Jinao Song, Ziyi Wang, Shuang Wen, Heng Sun, Kean Liu, Mingchen Zhong, Senyan Xu, Zhijing Sun, Jiaying Zhu, Chengjie Ge, Xingbo Wang, Yidi Liu, Xin Lu, Xueyang Fu, Zheng-Jun Zha, Dawei Fan, Dafeng Zhang, Yong Yang, Siru Zhang, Qinghua Yang, Hao Kang, Huiyuan Fu, Heng Zhang, Hongyuan Yu, Zhijuan Huang, Shuoyan Wei, Feng Li, Runmin Cong, Weiqi Luo, Mingyun Lin, Chenxu Jiang, Hongyi Liu, Lei Yu, WeiLun Li, Jiajun Zhai, Tingting Lin, Shuang Ma, Sai Zhou, Zhanwen Liu, Yang Wang, Eiffel Chong, Nuwan Bandara, Thivya Kandappu, Archan Misra, Yihang Chen, Zhan Li, Weijun Yuan, Wenzhuo Wang, Boyang Yao, Zhanglu Chen, Yijing Sun, Tianjiao Wan, Zijian Gao, Qisheng Xu, Kele Xu, Yukun Zhang, Yu He, Xiaoyan Xie, Tao Fu, Yashu Gautamkumar Patel, Vihar Ramesh Jain, Divesh Basina, Rishik Ashili, Manish Kumar Manjhi, Sourav Kumar, Prinon Benny, Himanshu Ghunawat, B Sri Sairam Gautam, Anett Varghese, Abhishek Yadav
This paper presents an overview of NTIRE 2025 the First Challenge on Event-Based Image Deblurring, detailing the proposed methodologies and corresponding results.
5 code implementations • 14 Apr 2025 • Yuqian Fu, Xingyu Qiu, Bin Ren, Yanwei Fu, Radu Timofte, Nicu Sebe, Ming-Hsuan Yang, Luc van Gool, Kaijin Zhang, Qingpeng Nong, Xiugang Dong, Hong Gao, Xiangsheng Zhou, Jiancheng Pan, Yanxing Liu, Xiao He, Jiahao Li, Yuze Sun, Xiaomeng Huang, Zhenyu Zhang, Ran Ma, YuHan Liu, Zijian Zhuang, Shuai Yi, Yixiong Zou, Lingyi Hong, Mingxi Chen, Runze Li, Xingdong Sheng, Wenqiang Zhang, Weisen Chen, Yongxin Yan, Xinguo Chen, Yuanjie Shao, Zhengrong Zuo, Nong Sang, Hao Wu, Haoran Sun, Shuming Hu, Yan Zhang, Zhiguang Shi, Yu Zhang, Chao Chen, Tao Wang, Da Feng, Linhai Zhuo, Ziming Lin, Yali Huang, Jie Me, Yiming Yang, Mi Guo, Mingyuan Jiu, Mingliang Xu, Maomao Xiong, Qunshu Zhang, Xinyu Cao, Yuqing Yang, Dianmo Sheng, Xuanpu Zhao, Zhiyu Li, Xuyang Ding, Wenqian Li
Cross-Domain Few-Shot Object Detection (CD-FSOD) poses significant challenges to existing object detection and few-shot detection models when applied across domains.
Cross-Domain Few-Shot
Cross-Domain Few-Shot Object Detection
+3
1 code implementation • 14 Apr 2025 • Bin Ren, Hang Guo, Lei Sun, Zongwei Wu, Radu Timofte, Yawei Li, Yao Zhang, Xinning Chai, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Li Song, Hongyuan Yu, Pufan Xu, Cheng Wan, Zhijuan Huang, Peng Guo, Shuyuan Cui, Chenjun Li, Xuehai Hu, Pan Pan, Xin Zhang, Heng Zhang, Qing Luo, Linyan Jiang, Haibo Lei, Qifang Gao, Yaqing Li, Weihua Luo, Tsing Li, Qing Wang, Yi Liu, Yang Wang, Hongyu An, Liou Zhang, Shijie Zhao, Lianhong Song, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Jing Wei, Mengyang Wang, Ruilong Guo, Qian Wang, Qingliang Liu, Yang Cheng, Davinci, Enxuan Gu, Pinxin Liu, Yongsheng Yu, Hang Hua, Yunlong Tang, Shihao Wang, ZhiYu Zhang, Yukun Yang, Jiyu Wu, Jiancheng Huang, Yifan Liu, Yi Huang, Shifeng Chen, Rui Chen, Yi Feng, Mingxi Li, Cailu Wan, XiangJi Wu, Zibin Liu, Jinyang Zhong, Kihwan Yoon, Ganzorig Gankhuyag, Shengyun Zhong, Mingyang Wu, Renjie Li, Yushen Zuo, Zhengzhong Tu, Zongang Gao, Guannan Chen, Yuan Tian, Wenhui Chen, Weijun Yuan, Zhan Li, Yihang Chen, Yifan Deng, Ruting Deng, Yilin Zhang, Huan Zheng, Yanyan Wei, Wenxuan Zhao, Suiyi Zhao, Fei Wang, Kun Li, Yinggan Tang, Mengjie Su, Jae-Hyeon Lee, Dong-Hyeop Son, Ui-Jin Choi, Tiancheng Shao, Yuqing Zhang, Mengcheng Ma, Donggeun Ko, Youngsang Kwak, Jiun Lee, Jaehwa Kwak, YuXuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Jing Hu, Hui Deng, Xuan Zhang, Lin Zhu, Qinrui Fan, Weijian Deng, Junnan Wu, Wenqin Deng, Yuquan Liu, Zhaohong Xu, Jameer Babu Pinjari, Kuldeep Purohit, Zeyu Xiao, Zhuoyuan Li, Surya Vashisth, Akshay Dudhane, Praful Hambarde, Sachin Chaudhary, Satya Naryan Tazi, Prashant Patil, Santosh Kumar Vipparthi, Subrahmanyam Murala, Wei-Chen Shen, I-Hsiang Chen, Yunzhe Xu, Chen Zhao, Zhizhou Chen, Akram Khatami-Rizi, Ahmad Mahmoudi-Aznaveh, Alejandro Merino, Bruno Longarela, Javier Abad, Marcos V. Conde, Simone Bianco, Luca Cogo, Gianmarco Corti
This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR).
1 code implementation • 14 Apr 2025 • Arash Torabi Goodarzi, Roman Kochnev, Waleed Khalid, Furui Qin, Tolgay Atinc Uzun, Yashkumar Sanjaybhai Dhameliya, Yash Kanubhai Kathiriya, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte
We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing.
no code implementations • 8 Apr 2025 • Roman Kochnev, Arash Torabi Goodarzi, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte
Optimal hyperparameter selection is critical for maximizing neural network performance, especially as models grow in complexity.
1 code implementation • 3 Apr 2025 • Andrei Dumitriu, Florin Tatui, Florin Miron, Radu Tudor Ionescu, Radu Timofte
The best results were achieved by the YOLOv8-nano model (runnable on a portable device), with an mAP50 of $88. 94%$ on the validation dataset and $81. 21%$ macro average on the test dataset.
no code implementations • 1 Apr 2025 • Andrei Dumitriu, Florin Tatui, Florin Miron, Aakash Ralhan, Radu Tudor Ionescu, Radu Timofte
To address these issues, we present RipVIS, a large-scale video instance segmentation benchmark explicitly designed for rip current segmentation.
1 code implementation • 20 Mar 2025 • Tim Seizinger, Florin-Alexandru Vasluianu, Marcos V. Conde, Radu Timofte
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography.
no code implementations • 18 Mar 2025 • Runyi Li, Bin Chen, Jian Zhang, Radu Timofte
Real-world image super-resolution is a critical image processing task, where two key evaluation criteria are the fidelity to the original image and the visual realness of the generated results.
no code implementations • 10 Mar 2025 • S M A Sharif, Abdur Rehman, Zain Ul Abidin, Rizwan Ali Naqvi, Fayaz Ali Dharejo, Radu Timofte
To address this limitation, we propose a large-scale high-resolution (i. e., beyond 4k) pair Single-Shot Low-Light Enhancement (SLLIE) dataset.
no code implementations • 10 Mar 2025 • Cansu Korkmaz, Nancy Mehta, Radu Timofte
Recovering high-frequency details and textures from low-resolution images remains a fundamental challenge in super-resolution (SR), especially when real-world degradations are complex and unknown.
no code implementations • 31 Jan 2025 • Mian Muhammad Naeem Abid, Nancy Mehta, Zongwei Wu, Fayaz Ali Dharejo, Radu Timofte
We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
1 code implementation • 30 Jan 2025 • Juan Wen, Weiyan Hou, Luc van Gool, Radu Timofte
In recent years, Transformers-based models have made significant progress in the field of image restoration by leveraging their inherent ability to capture complex contextual features.
1 code implementation • 9 Jan 2025 • Gregor Geigle, Florian Schneider, Carolin Holtermann, Chris Biemann, Radu Timofte, Anne Lauscher, Goran Glavaš
Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data, which makes them struggle to understand non-English input and fail to generate output in the desired target language.
1 code implementation • 10 Dec 2024 • Jingzhi Li, Zongwei Wu, Eduard Zamfir, Radu Timofte
Accurate 3D objects relighting in diverse unseen environments is crucial for realistic virtual object placement.
no code implementations • 5 Dec 2024 • Omar Elezabi, Marcos V. Conde, Zongwei Wu, Radu Timofte
We develop a context-aware Implicit Neural Representation that learns to apply edits adaptively based on image content and context, and is capable of learning from a single example.
no code implementations • 27 Nov 2024 • Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, Radu Timofte
To address this, we introduce ``complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields.
Ranked #2 on
Blind All-in-One Image Restoration
on 5-Degradations
1 code implementation • 7 Oct 2024 • Omar Elezabi, Zongwei Wu, Radu Timofte
In this study, we propose a novel plug-and-play module designed to mitigate these misalignment issues by aligning LR inputs with HR images during training.
no code implementations • 5 Oct 2024 • Ivan Molodetskikh, Artem Borisov, Dmitriy Vatolin, Radu Timofte, Jianzhao Liu, Tianwu Zhi, Yabin Zhang, Yang Li, Jingwen Xu, Yiting Liao, Qing Luo, Ao-Xiang Zhang, Peng Zhang, Haibo Lei, Linyan Jiang, Yaqing Li, Yuqin Cao, Wei Sun, Weixia Zhang, Yinan Sun, Ziheng Jia, Yuxin Zhu, Xiongkuo Min, Guangtao Zhai, Weihua Luo, Yupeng Z., Hong Y
This paper presents the Video Super-Resolution (SR) Quality Assessment (QA) Challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2024.
no code implementations • 28 Sep 2024 • Zhuyun Zhou, Zongwei Wu, Florian Bolli, Rémi Boutteau, Fan Yang, Radu Timofte, Dominique Ginhac, Tobi Delbruck
Our goal is to fuse the 2D LiDAR data with event data in an end-to-end learning framework for steering prediction, which is crucial for autonomous racing.
1 code implementation • 26 Sep 2024 • Marcos V. Conde, Florin Vasluianu, Radu Timofte
In this work we tackle image restoration directly in the RAW domain.
no code implementations • 25 Sep 2024 • Marcos V. Conde, Andy Bigos, Radu Timofte
Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression.
no code implementations • 25 Sep 2024 • Longguang Wang, Yulan Guo, Juncheng Li, Hongda Liu, Yang Zhao, Yingqian Wang, Zhi Jin, Shuhang Gu, Radu Timofte
This paper summarizes the 3rd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results.
no code implementations • 25 Sep 2024 • Marcos V Conde, Zhijun Lei, Wen Li, Christos Bampis, Ioannis Katsavounidis, Radu Timofte
Video super-resolution (VSR) is a critical task for enhancing low-bitrate and low-resolution videos, particularly in streaming applications.
1 code implementation • 24 Sep 2024 • Vlad Hosu, Marcos V. Conde, Lorenzo Agnolucci, Nabajeet Barman, Saman Zadtootaghaj, Radu Timofte
By pushing the boundaries of NR-IQA for high-resolution photos, the UHD-IQA Challenge aims to stimulate the development of practical models that can keep pace with the rapidly evolving landscape of digital photography.
no code implementations • 24 Sep 2024 • Marcos V. Conde, Florin-Alexandru Vasluianu, Jinhui Xiong, Wei Ye, Rakesh Ranjan, Radu Timofte
The increasing demand for augmented reality (AR) and virtual reality (VR) applications highlights the need for efficient depth information processing.
no code implementations • 23 Sep 2024 • Michal Nazarczuk, Thomas Tanay, Sibi Catley-Chandar, Richard Shaw, Radu Timofte, Eduardo Pérez-Pellitero
A recurring problem in sparse rendering literature is the lack of an homogeneous, up-to-date, dataset and evaluation protocol.
no code implementations • 23 Sep 2024 • Michal Nazarczuk, Sibi Catley-Chandar, Thomas Tanay, Richard Shaw, Eduardo Pérez-Pellitero, Radu Timofte, Xing Yan, Pan Wang, Yali Guo, Yongxin Wu, Youcheng Cai, Yanan Yang, Junting Li, Yanghong Zhou, P. Y. Mok, Zongqi He, Zhe Xiao, Kin-Chung Chan, Hana Lebeta Goshu, Cuixin Yang, Rongkang Dong, Jun Xiao, Kin-Man Lam, Jiayao Hao, Qiong Gao, Yanyan Zu, Junpei Zhang, Licheng Jiao, Xu Liu, Kuldeep Purohit
In this challenge, 5 teams submitted final results to Track 1 and 4 teams submitted final results to Track 2.
1 code implementation • 23 Sep 2024 • Andrey Moskalenko, Alexey Bryncev, Dmitry Vatolin, Radu Timofte, Gen Zhan, Li Yang, Yunlong Tang, Yiting Liao, Jiongzhi Lin, Baitao Huang, Morteza Moradi, Mohammad Moradi, Francesco Rundo, Concetto Spampinato, Ali Borji, Simone Palazzo, Yuxin Zhu, Yinan Sun, Huiyu Duan, Yuqin Cao, Ziheng Jia, Qiang Hu, Xiongkuo Min, Guangtao Zhai, Hao Fang, Runmin Cong, Xiankai Lu, Xiaofei Zhou, Wei zhang, Chunyu Zhao, Wentao Mu, Tao Deng, Hamed R. Tavakoli
The goal of the participants was to develop a method for predicting accurate saliency maps for the provided set of video sequences.
1 code implementation • 21 Aug 2024 • Maksim Smirnov, Aleksandr Gushchin, Anastasia Antsiferova, Dmitry Vatolin, Radu Timofte, Ziheng Jia, ZiCheng Zhang, Wei Sun, Jiaying Qian, Yuqin Cao, Yinan Sun, Yuxin Zhu, Xiongkuo Min, Guangtao Zhai, Kanjar De, Qing Luo, Ao-Xiang Zhang, Peng Zhang, Haibo Lei, Linyan Jiang, Yaqing Li, Wenhui Meng, Zhenzhong Chen, Zhengxue Cheng, Jiahao Xiao, Jun Xu, Chenlong He, Qi Zheng, Ruoxi Zhu, Min Li, Yibo Fan, Zhengzhong Tu
The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H. 264, HEVC/H. 265, AV1, and VVC/H. 266) and containing a comprehensive collection of compression artifacts.
no code implementations • 26 Jul 2024 • Sohyeong Kim, Martin Danelljan, Radu Timofte, Luc van Gool, Jean-Philippe Thiran
In this thesis, we introduce Paired Image and Video data from three CAMeraS, namely PIV3CAMS, aimed at multiple computer vision tasks.
1 code implementation • 18 Jul 2024 • Bin Ren, Eduard Zamfir, Zongwei Wu, Yawei Li, Yidi Li, Danda Pani Paudel, Radu Timofte, Ming-Hsuan Yang, Nicu Sebe
With the proliferation of mobile devices, the need for an efficient model to restore any degraded image has become increasingly significant and impactful.
Ranked #5 on
5-Degradation Blind All-in-One Image Restoration
on 5-Degradation Blind All-in-One Image Restoration
5-Degradation Blind All-in-One Image Restoration
Benchmarking
+2
no code implementations • 3 Jul 2024 • Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, Yao Yao, Luc van Gool
Stereo Risk departs from the conventional discretization approach by formulating the scene disparity as an optimal solution to a continuous risk minimization problem, hence the name "stereo risk".
1 code implementation • 20 Jun 2024 • Gregor Geigle, Radu Timofte, Goran Glavaš
We benchmark 12 public LVLMs on \texttt{FOCI} and show that it tests for a \textit{complementary skill} to established image understanding and reasoning benchmarks.
no code implementations • 20 Jun 2024 • Gregor Geigle, Radu Timofte, Goran Glavaš
Large vision-language models (LVLMs) have recently dramatically pushed the state of the art in image captioning and many image understanding tasks (e. g., visual question answering).
no code implementations • 18 Jun 2024 • Egor Ershov, Artyom Panshin, Oleg Karasev, Sergey Korchagin, Shepelev Lev, Alexandr Startsev, Daniil Vladimirov, Ekaterina Zaychenkova, Nikola Banić, Dmitrii Iarchuk, Maria Efimova, Radu Timofte, Arseniy Terekhin, Shuwei Yue, Yuyang Liu, Minchen Wei, Lu Xu, Chao Zhang, Yasi Wang, Furkan Kınlı, Doğa Yılmaz, Barış Özcan, Furkan Kıraç, Shuai Liu, Jingyuan Xiao, Chaoyu Feng, Hao Wang, Guangqi Shao, Yuqian Zhang, Yibin Huang, Wei Luo, Liming Wang, Xiaotao Wang, Lei Lei, Simone Zini, Claudio Rota, Marco Buzzelli, Simone Bianco, Raimondo Schettini, Jin Guo, Tianli Liu, Mohao Wu, Ben Shao, Qirui Yang, Xianghui Li, Qihua Cheng, Fangpu Zhang, Zhiqiang Xu, Jingyu Yang, Huanjing Yue
The top ranking participants' solutions effectively represent the state-of-the-art in nighttime photography rendering.
2 code implementations • 28 May 2024 • Yuedong Tan, Zongwei Wu, Yuqian Fu, Zhuyun Zhou, Guolei Sun, Eduard Zamfi, Chao Ma, Danda Pani Paudel, Luc van Gool, Radu Timofte
Technically, we achieve this by routing samples from one modality to the expert of the others, within a mixture-of-experts framework designed for multimodal video object tracking.
1 code implementation • 28 May 2024 • Ziheng Qin, Zhaopan Xu, Yukun Zhou, Zangwei Zheng, Zebang Cheng, Hao Tang, Lei Shang, Baigui Sun, Xiaojiang Peng, Radu Timofte, Hongxun Yao, Kai Wang, Yang You
To tackle this challenge, we propose InfoGrowth, an efficient online algorithm for data cleaning and selection, resulting in a growing dataset that keeps up to date with awareness of cleanliness and diversity.
no code implementations • 24 May 2024 • Eduard Zamfir, Zongwei Wu, Nancy Mehta, Danda Pani Paudel, Yulun Zhang, Radu Timofte
Reconstructing missing details from degraded low-quality inputs poses a significant challenge.
Ranked #4 on
5-Degradation Blind All-in-One Image Restoration
on 5-Degradation Blind All-in-One Image Restoration
5-Degradation Blind All-in-One Image Restoration
Blind All-in-One Image Restoration
+1
no code implementations • 23 May 2024 • Maxime Burchi, Radu Timofte
In this paper, we present MuDreamer, a robust reinforcement learning agent that builds upon the DreamerV3 algorithm by learning a predictive world model without the need for reconstructing input signals.
no code implementations • 16 May 2024 • Jie Liang, Radu Timofte, Qiaosi Yi, Shuaizheng Liu, Lingchen Sun, Rongyuan Wu, Xindong Zhang, Hui Zeng, Lei Zhang
In this paper, we review the NTIRE 2024 challenge on Restore Any Image Model (RAIM) in the Wild.
no code implementations • 30 Apr 2024 • Yuekun Dai, Dafeng Zhang, Xiaoming Li, Zongsheng Yue, Chongyi Li, Shangchen Zhou, Ruicheng Feng, Peiqing Yang, Zhezhu Jin, Guanqun Liu, Chen Change Loy, Lize Zhang, Shuai Liu, Chaoyu Feng, Luyang Wang, Shuan Chen, Guangqi Shao, Xiaotao Wang, Lei Lei, Qirui Yang, Qihua Cheng, Zhiqiang Xu, Yihao Liu, Huanjing Yue, Jingyu Yang, Florin-Alexandru Vasluianu, Zongwei Wu, George Ciubotariu, Radu Timofte, Zhao Zhang, Suiyi Zhao, Bo wang, Zhichao Zuo, Yanyan Wei, Kuppa Sai Sri Teja, Jayakar Reddy A, Girish Rongali, Kaushik Mitra, Zhihao Ma, Yongxu Liu, Wanying Zhang, Wei Shang, Yuhong He, Long Peng, Zhongxin Yu, Shaofei Luo, Jian Wang, Yuqi Miao, Baiang Li, Gang Wei, Rakshank Verma, Ritik Maheshwari, Rahul Tekchandani, Praful Hambarde, Satya Narayan Tazi, Santosh Kumar Vipparthi, Subrahmanyam Murala, Haopeng Zhang, Yingli Hou, Mingde Yao, Levin M S, Aniruth Sundararajan, Hari Kumar A
The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems.
2 code implementations • 25 Apr 2024 • Marcos V. Conde, Zhijun Lei, Wen Li, Cosmin Stejerean, Ioannis Katsavounidis, Radu Timofte, Kihwan Yoon, Ganzorig Gankhuyag, Jiangtao Lv, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Zhiyuan Li, Hao Wei, Chenyang Ge, Dongyang Zhang, Tianle Liu, Huaian Chen, Yi Jin, Menghan Zhou, Yiqiang Yan, Si Gao, Biao Wu, Shaoli Liu, Chengjian Zheng, Diankai Zhang, Ning Wang, Xintao Qiu, Yuanbo Zhou, Kongxian Wu, Xinwei Dai, Hui Tang, Wei Deng, Qingquan Gao, Tong Tong, Jae-Hyeon Lee, Ui-Jin Choi, Min Yan, Xin Liu, Qian Wang, Xiaoqian Ye, Zhan Du, Tiansen Zhang, Long Peng, Jiaming Guo, Xin Di, Bohao Liao, Zhibo Du, Peize Xia, Renjing Pei, Yang Wang, Yang Cao, ZhengJun Zha, Bingnan Han, Hongyuan Yu, Zhuoyuan Wu, Cheng Wan, Yuqing Liu, Haodong Yu, Jizhe Li, Zhijuan Huang, Yuan Huang, Yajun Zou, Xianyu Guan, Qi Jia, Heng Zhang, Xuanwu Yin, Kunlong Zuo, Hyeon-Cheol Moon, Tae-hyun Jeong, Yoonmo Yang, Jae-Gon Kim, Jinwoo Jeong, Sunjei Kim
This paper introduces a novel benchmark as part of the AIS 2024 Real-Time Image Super-Resolution (RTSR) Challenge, which aims to upscale compressed images from 540p to 4K resolution (4x factor) in real-time on commercial GPUs.
no code implementations • 25 Apr 2024 • Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, HaoNing Wu, Yixuan Gao, Yuqin Cao, ZiCheng Zhang, Xiele Wu, Radu Timofte, Fei Peng, Huiyuan Fu, Anlong Ming, Chuanming Wang, Huadong Ma, Shuai He, Zifei Dou, Shu Chen, Huacong Zhang, Haiyi Xie, Chengwei Wang, Baoying Chen, Jishen Zeng, Jianquan Yang, Weigang Wang, Xi Fang, Xiaoxin Lv, Jun Yan, Tianwu Zhi, Yabin Zhang, Yaohui Li, Yang Li, Jingwen Xu, Jianzhao Liu, Yiting Liao, Junlin Li, Zihao Yu, Yiting Lu, Xin Li, Hossein Motamednia, S. Farhad Hosseini-Benvidi, Fengbin Guan, Ahmad Mahmoudi-Aznaveh, Azadeh Mansouri, Ganzorig Gankhuyag, Kihwan Yoon, Yifang Xu, Haotian Fan, Fangyuan Kong, Shiling Zhao, Weifeng Dong, Haibing Yin, Li Zhu, Zhiling Wang, Bingchen Huang, Avinab Saha, Sandeep Mishra, Shashank Gupta, Rajesh Sureddi, Oindrila Saha, Luigi Celona, Simone Bianco, Paolo Napoletano, Raimondo Schettini, Junfeng Yang, Jing Fu, Wei zhang, Wenzhi Cao, Limei Liu, Han Peng, Weijun Yuan, Zhan Li, Yihang Cheng, Yifan Deng, Haohui Li, Bowen Qu, Yao Li, Shuqing Luo, Shunzhou Wang, Wei Gao, Zihao Lu, Marcos V. Conde, Xinrui Wang, Zhibo Chen, Ruling Liao, Yan Ye, Qiulin Wang, Bing Li, Zhaokun Zhou, Miao Geng, Rui Chen, Xin Tao, Xiaoyu Liang, Shangkun Sun, Xingyuan Ma, Jiaze Li, Mengduo Yang, Haoran Xu, Jie zhou, Shiding Zhu, Bohan Yu, Pengfei Chen, Xinrui Xu, Jiabin Shen, Zhichao Duan, Erfan Asadi, Jiahe Liu, Qi Yan, Youran Qu, Xiaohui Zeng, Lele Wang, Renjie Liao
A total of 196 participants have registered in the video track.
1 code implementation • 24 Apr 2024 • Marcos V. Conde, Florin-Alexandru Vasluianu, Radu Timofte, Jianxing Zhang, Jia Li, Fan Wang, Xiaopeng Li, Zikun Liu, Hyunhee Park, Sejun Song, Changho Kim, Zhijuan Huang, Hongyuan Yu, Cheng Wan, Wending Xiang, Jiamin Lin, Hang Zhong, Qiaosong Zhang, Yue Sun, Xuanwu Yin, Kunlong Zuo, Senyan Xu, Siyuan Jiang, Zhijing Sun, Jiaying Zhu, Liangyan Li, Ke Chen, Yunzhe Li, Yimo Ning, Guanhua Zhao, Jun Chen, Jinyang Yu, Kele Xu, Qisheng Xu, Yong Dou
This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results.
1 code implementation • 24 Apr 2024 • Marcos V. Conde, Saman Zadtootaghaj, Nabajeet Barman, Radu Timofte, Chenlong He, Qi Zheng, Ruoxi Zhu, Zhengzhong Tu, Haiqiang Wang, Xiangguang Chen, Wenhui Meng, Xiang Pan, Huiying Shi, Han Zhu, Xiaozhong Xu, Lei Sun, Zhenzhong Chen, Shan Liu, ZiCheng Zhang, HaoNing Wu, Yingjie Zhou, Chunyi Li, Xiaohong Liu, Weisi Lin, Guangtao Zhai, Wei Sun, Yuqin Cao, Yanwei Jiang, Jun Jia, Zhichao Zhang, Zijian Chen, Weixia Zhang, Xiongkuo Min, Steve Göring, Zihao Qi, Chen Feng
The performance of the top-5 submissions is reviewed and provided here as a survey of diverse deep models for efficient video quality assessment of user-generated content.
3 code implementations • 22 Apr 2024 • Xiaoning Liu, Zongwei Wu, Ao Li, Florin-Alexandru Vasluianu, Yulun Zhang, Shuhang Gu, Le Zhang, Ce Zhu, Radu Timofte, Zhi Jin, Hongjun Wu, Chenxi Wang, Haitao Ling, Yuanhao Cai, Hao Bian, Yuxin Zheng, Jing Lin, Alan Yuille, Ben Shao, Jin Guo, Tianli Liu, Mohao Wu, Yixu Feng, Shuo Hou, Haotian Lin, Yu Zhu, Peng Wu, Wei Dong, Jinqiu Sun, Yanning Zhang, Qingsen Yan, Wenbin Zou, Weipeng Yang, Yunxiang Li, Qiaomu Wei, Tian Ye, Sixiang Chen, Zhao Zhang, Suiyi Zhao, Bo wang, Yan Luo, Zhichao Zuo, Mingshen Wang, Junhu Wang, Yanyan Wei, Xiaopeng Sun, Yu Gao, Jiancheng Huang, Hongming Chen, Xiang Chen, Hui Tang, Yuanbin Chen, Yuanbo Zhou, Xinwei Dai, Xintao Qiu, Wei Deng, Qinquan Gao, Tong Tong, Mingjia Li, Jin Hu, Xinyu He, Xiaojie Guo, sabarinathan, K Uma, A Sasithradevi, B Sathya Bama, S. Mohamed Mansoor Roomi, V. Srivatsav, Jinjuan Wang, Long Sun, Qiuying Chen, Jiahong Shao, Yizhi Zhang, Marcos V. Conde, Daniel Feijoo, Juan C. Benito, Alvaro García, Jaeho Lee, Seongwan Kim, Sharif S M A, Nodirkhuja Khujaev, Roman Tsoy, Ali Murtaza, Uswah Khairuddin, Ahmad 'Athif Mohd Faudzi, Sampada Malagi, Amogh Joshi, Nikhil Akalwadi, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Wenyi Lian, Wenjing Lian, Jagadeesh Kalyanshetti, Vijayalaxmi Ashok Aralikatti, Palani Yashaswini, Nitish Upasi, Dikshit Hegde, Ujwala Patil, Sujata C, Xingzhuo Yan, Wei Hao, Minghan Fu, Pooja Choksy, Anjali Sarvaiya, Kishor Upla, Kiran Raja, Hailong Yan, Yunkai Zhang, Baiang Li, Jingyi Zhang, Huan Zheng
This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results.
1 code implementation • 17 Apr 2024 • Omar Elezabi, Marcos V. Conde, Radu Timofte
First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images.
1 code implementation • 17 Apr 2024 • Nicolas Chahine, Marcos V. Conde, Daniela Carfora, Gabriel Pacianotto, Benoit Pochon, Sira Ferradans, Radu Timofte
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results.
1 code implementation • 17 Apr 2024 • Xin Li, Kun Yuan, Yajing Pei, Yiting Lu, Ming Sun, Chao Zhou, Zhibo Chen, Radu Timofte, Wei Sun, HaoNing Wu, ZiCheng Zhang, Jun Jia, Zhichao Zhang, Linhan Cao, Qiubo Chen, Xiongkuo Min, Weisi Lin, Guangtao Zhai, Jianhui Sun, Tianyi Wang, Lei LI, Han Kong, Wenxuan Wang, Bing Li, Cheng Luo, Haiqiang Wang, Xiangguang Chen, Wenhui Meng, Xiang Pan, Huiying Shi, Han Zhu, Xiaozhong Xu, Lei Sun, Zhenzhong Chen, Shan Liu, Fangyuan Kong, Haotian Fan, Yifang Xu, Haoran Xu, Mengduo Yang, Jie zhou, Jiaze Li, Shijie Wen, Mai Xu, Da Li, Shunyu Yao, Jiazhi Du, WangMeng Zuo, Zhibo Li, Shuai He, Anlong Ming, Huiyuan Fu, Huadong Ma, Yong Wu, Fie Xue, Guozhi Zhao, Lina Du, Jie Guo, Yu Zhang, huimin zheng, JunHao Chen, Yue Liu, Dulan Zhou, Kele Xu, Qisheng Xu, Tao Sun, Zhixiang Ding, Yuhang Hu
This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i. e., Kuaishou/Kwai Platform.
1 code implementation • 17 Apr 2024 • Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde, Radu Timofte, Shih-Chii Liu, Qinyu Chen, Zheng-Jun Zha, Wei Zhai, Han Han, Bohao Liao, Yuliang Wu, Zengyu Wan, Zhong Wang, Yang Cao, Ganchao Tan, Jinze Chen, Yan Ru Pei, Sasskia Brüers, Sébastien Crouzet, Douglas McLelland, Oliver Coenen, Baoheng Zhang, Yizhao Gao, Jingyuan Li, Hayden Kwok-Hay So, Philippe Bich, Chiara Boretti, Luciano Prono, Mircea Lică, David Dinucu-Jianu, Cătălin Grîu, Xiaopeng Lin, Hongwei Ren, Bojun Cheng, Xinan Zhang, Valentin Vial, Anthony Yezzi, James Tsai
This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge.
3 code implementations • 16 Apr 2024 • Bin Ren, Nancy Mehta, Radu Timofte, Hongyuan Yu, Cheng Wan, Yuxin Hong, Bingnan Han, Zhuoyuan Wu, Yajun Zou, Yuqing Liu, Jizhe Li, Keji He, Chao Fan, Heng Zhang, Xiaolin Zhang, Xuanwu Yin, Kunlong Zuo, Bohao Liao, Peizhe Xia, Long Peng, Zhibo Du, Xin Di, Wangkai Li, Yang Wang, Wei Zhai, Renjing Pei, Jiaming Guo, Songcen Xu, Yang Cao, ZhengJun Zha, Yan Wang, Yi Liu, Qing Wang, Gang Zhang, Liou Zhang, Shijie Zhao, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Xin Liu, Min Yan, Menghan Zhou, Yiqiang Yan, Yixuan Liu, Wensong Chan, Dehua Tang, Dong Zhou, Li Wang, Lu Tian, Barsoum Emad, Bohan Jia, Junbo Qiao, Yunshuai Zhou, Yun Zhang, Wei Li, Shaohui Lin, Shenglong Zhou, Binbin Chen, Jincheng Liao, Suiyi Zhao, Zhao Zhang, Bo wang, Yan Luo, Yanyan Wei, Feng Li, Mingshen Wang, Yawei Li, Jinhan Guan, Dehua Hu, Jiawei Yu, Qisheng Xu, Tao Sun, Long Lan, Kele Xu, Xin Lin, Jingtong Yue, Lehan Yang, Shiyi Du, Lu Qi, Chao Ren, Zeyu Han, YuHan Wang, Chaolin Chen, Haobo Li, Mingjun Zheng, Zhongbao Yang, Lianhong Song, Xingzhuo Yan, Minghan Fu, Jingyi Zhang, Baiang Li, Qi Zhu, Xiaogang Xu, Dan Guo, Chunle Guo, Jiadi Chen, Huanhuan Long, Chunjiang Duanmu, Xiaoyan Lei, Jie Liu, Weilin Jia, Weifeng Cao, Wenlong Zhang, Yanyu Mao, Ruilong Guo, Nihao Zhang, Qian Wang, Manoj Pandey, Maksym Chernozhukov, Giang Le, Shuli Cheng, Hongyuan Wang, Ziyan Wei, Qingting Tang, Liejun Wang, Yongming Li, Yanhui Guo, Hao Xu, Akram Khatami-Rizi, Ahmad Mahmoudi-Aznaveh, Chih-Chung Hsu, Chia-Ming Lee, Yi-Shiuan Chou, Amogh Joshi, Nikhil Akalwadi, Sampada Malagi, Palani Yashaswini, Chaitra Desai, Ramesh Ashok Tabib, Ujwala Patil, Uma Mudenagudi
In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking.
1 code implementation • 16 Apr 2024 • Georgy Perevozchikov, Nancy Mehta, Mahmoud Afifi, Radu Timofte
Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs.
1 code implementation • 15 Apr 2024 • Zheng Chen, Zongwei Wu, Eduard Zamfir, Kai Zhang, Yulun Zhang, Radu Timofte, Xiaokang Yang, Hongyuan Yu, Cheng Wan, Yuxin Hong, Zhijuan Huang, Yajun Zou, Yuan Huang, Jiamin Lin, Bingnan Han, Xianyu Guan, Yongsheng Yu, Daoan Zhang, Xuanwu Yin, Kunlong Zuo, Jinhua Hao, Kai Zhao, Kun Yuan, Ming Sun, Chao Zhou, Hongyu An, Xinfeng Zhang, Zhiyuan Song, Ziyue Dong, Qing Zhao, Xiaogang Xu, Pengxu Wei, Zhi-chao Dou, Gui-ling Wang, Chih-Chung Hsu, Chia-Ming Lee, Yi-Shiuan Chou, Cansu Korkmaz, A. Murat Tekalp, Yubin Wei, Xiaole Yan, Binren Li, Haonan Chen, Siqi Zhang, Sihan Chen, Amogh Joshi, Nikhil Akalwadi, Sampada Malagi, Palani Yashaswini, Chaitra Desai, Ramesh Ashok Tabib, Ujwala Patil, Uma Mudenagudi, Anjali Sarvaiya, Pooja Choksy, Jagrit Joshi, Shubh Kawa, Kishor Upla, Sushrut Patwardhan, Raghavendra Ramachandra, Sadat Hossain, Geongi Park, S. M. Nadim Uddin, Hao Xu, Yanhui Guo, Aman Urumbekov, Xingzhuo Yan, Wei Hao, Minghan Fu, Isaac Orais, Samuel Smith, Ying Liu, Wangwang Jia, Qisheng Xu, Kele Xu, Weijun Yuan, Zhan Li, Wenqin Kuang, Ruijin Guan, Ruting Deng, Zhao Zhang, Bo wang, Suiyi Zhao, Yan Luo, Yanyan Wei, Asif Hussain Khan, Christian Micheloni, Niki Martinel
This paper reviews the NTIRE 2024 challenge on image super-resolution ($\times$4), highlighting the solutions proposed and the outcomes obtained.
1 code implementation • 15 Apr 2024 • Dmitry Ignatov, Andrey Ignatov, Radu Timofte
We present ANYU, a new virtually augmented version of the NYU depth v2 dataset, designed for monocular depth estimation.
no code implementations • 6 Apr 2024 • Juan Wen, Yawei Li, Chao Zhang, Weiyan Hou, Radu Timofte, Luc van Gool
Integration of attention mechanisms across feature and positional dimensions further enhances the recovery of fine details.
1 code implementation • 27 Mar 2024 • Florin-Alexandru Vasluianu, Tim Seizinger, Zongwei Wu, Rakesh Ranjan, Radu Timofte
However, existing works often simplify this task within the context of shadow removal, limiting the light sources to one and oversimplifying the scene, thus excluding complex self-shadows and restricting surface classes to smooth ones.
no code implementations • 24 Mar 2024 • Guillaume Thiry, Hao Tang, Radu Timofte, Luc van Gool
Video inpainting tasks have seen significant improvements in recent years with the rise of deep neural networks and, in particular, vision transformers.
no code implementations • 15 Mar 2024 • Xiaoning Liu, Ao Li, Zongwei Wu, Yapeng Du, Le Zhang, Yulun Zhang, Radu Timofte, Ce Zhu
Leveraging Transformer attention has led to great advancements in HDR deghosting.
no code implementations • 14 Mar 2024 • Maxime Burchi, Krishna C. Puvvada, Jagadeesh Balam, Boris Ginsburg, Radu Timofte
Humans are adept at leveraging visual cues from lip movements for recognizing speech in adverse listening conditions.
Audio-Visual Speech Recognition
Robust Speech Recognition
+2
2 code implementations • 5 Feb 2024 • Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yulun Zhang, Radu Timofte
Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts.
1 code implementation • 29 Jan 2024 • Marcos V. Conde, Gregor Geigle, Radu Timofte
All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model.
1 code implementation • CVPR 2024 • Roman Flepp, Andrey Ignatov, Radu Timofte, Luc van Gool
Despite the latest advancements in camera hardware the mobile camera sensor area cannot be increased significantly due to physical constraints leading to a pixel size of 0. 6--2. 0 \mum which results in strong image noise even in moderate lighting conditions.
1 code implementation • 24 Dec 2023 • Marcos V. Conde, Florin Vasluianu, Radu Timofte
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
1 code implementation • CVPR 2024 • Zongwei Wu, Jilai Zheng, Xiangxuan Ren, Florin-Alexandru Vasluianu, Chao Ma, Danda Pani Paudel, Luc van Gool, Radu Timofte
In practice, most existing RGB trackers learn a single set of parameters to use them across datasets and applications.
Ranked #29 on
Rgb-T Tracking
on LasHeR
1 code implementation • CVPR 2024 • JieZhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, Luc van Gool
Due to the inherent property of diffusion models, most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
no code implementations • 19 Nov 2023 • Jingyun Liang, Yuchen Fan, Kai Zhang, Radu Timofte, Luc van Gool, Rakesh Ranjan
While recent years have witnessed great progress on using diffusion models for video generation, most of them are simple extensions of image generation frameworks, which fail to explicitly consider one of the key differences between videos and images, i. e., motion.
no code implementations • 21 Sep 2023 • Jonas Brenig, Radu Timofte
This may be caused by a combination of factors, including having a loss function for each layer and the way the supervised training is realized in the forward-forward paradigm.
1 code implementation • 31 Aug 2023 • Shuang Xu, Yifan Wang, Zixiang Zhao, Jiangjun Peng, Xiangyong Cao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc van Gool
NGR is applicable to various image types and different image processing tasks, functioning in a zero-shot learning fashion, making it a versatile and plug-and-play regularizer.
no code implementations • 8 Aug 2023 • Juan Wen, Shupeng Cheng, Peng Xu, BoWen Zhou, Radu Timofte, Weiyan Hou, Luc van Gool
Super Resolution (SR) and Camouflaged Object Detection (COD) are two hot topics in computer vision with various joint applications.
no code implementations • 19 Jul 2023 • Xiaohong Liu, Xiongkuo Min, Wei Sun, Yulun Zhang, Kai Zhang, Radu Timofte, Guangtao Zhai, Yixuan Gao, Yuqin Cao, Tengchuan Kou, Yunlong Dong, Ziheng Jia, Yilin Li, Wei Wu, Shuming Hu, Sibin Deng, Pengxiang Xiao, Ying Chen, Kai Li, Kai Zhao, Kun Yuan, Ming Sun, Heng Cong, Hao Wang, Lingzhi Fu, Yusheng Zhang, Rongyu Zhang, Hang Shi, Qihang Xu, Longan Xiao, Zhiliang Ma, Mirko Agarla, Luigi Celona, Claudio Rota, Raimondo Schettini, Zhiwei Huang, Yanan Li, Xiaotao Wang, Lei Lei, Hongye Liu, Wei Hong, Ironhead Chuang, Allen Lin, Drake Guan, Iris Chen, Kae Lou, Willy Huang, Yachun Tasi, Yvonne Kao, Haotian Fan, Fangyuan Kong, Shiqi Zhou, Hao liu, Yu Lai, Shanshan Chen, Wenqi Wang, HaoNing Wu, Chaofeng Chen, Chunzheng Zhu, Zekun Guo, Shiling Zhao, Haibing Yin, Hongkui Wang, Hanene Brachemi Meftah, Sid Ahmed Fezza, Wassim Hamidouche, Olivier Déforges, Tengfei Shi, Azadeh Mansouri, Hossein Motamednia, Amir Hossein Bakhtiari, Ahmad Mahmoudi Aznaveh
61 participating teams submitted their prediction results during the development phase, with a total of 3168 submissions.
1 code implementation • 13 Jul 2023 • Gregor Geigle, Abhay Jain, Radu Timofte, Goran Glavaš
Modular vision-language models (Vision-LLMs) align pretrained image encoders with (frozen) large language models (LLMs) and post-hoc condition LLMs to `understand' the image input.
1 code implementation • 20 Jun 2023 • Marcos V. Conde, Javier Vazquez-Corral, Michael S. Brown, Radu Timofte
Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly.
1 code implementation • 14 Jun 2023 • Gregor Geigle, Radu Timofte, Goran Glavaš
Vision-and-language (VL) models with separate encoders for each modality (e. g., CLIP) have become the go-to models for zero-shot image classification and image-text retrieval.
2 code implementations • CVPRW 2023 • Eduard Zamfir, Marcos V. Conde, Radu Timofte
Over the past few years, high-definition videos and images in 720p (HD), 1080p (FHD), and 4K (UHD) resolution have become standard.
1 code implementation • CVPRW 2023 • Marcos V. Conde, Eduard Zamfir, Radu Timofte, Daniel Motilla, and others
This paper introduces a novel benchmark for efficient upscaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (x2 and x3 factors) in real-time on commercial GPUs.
1 code implementation • CVPRW 2023 • Marcos V. Conde, Manuel Kolmet, Tim Seizinger, Tom E. Bishop, Radu Timofte, Xiangyu Kong, Dafeng Zhang, Jinlong Wu, Fan Wang, Juewen Peng, Zhiyu Pan, Chengxin Liu, Xianrui Luo, Huiqiang Sun, Liao Shen, Zhiguo Cao, Ke Xian, Chaowei Liu, Zigeng Chen, Xingyi Yang, Songhua Liu, Yongcheng Jing, Michael Bi Mi, Xinchao Wang, Zhihao Yang, Wenyi Lian, Siyuan Lai, Haichuan Zhang, Trung Hoang, Amirsaeed Yazdani, Vishal Monga, Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön, Yuxuan Zhao, Baoliang Chen, Yiqing Xu, JiXiang Niu
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge.
1 code implementation • CVPR 2023 • Tim Seizinger, Marcos V. Conde, Manuel Kolmet, Tom E. Bishop, Radu Timofte
Our method can render Bokeh from an all-in-focus image, or transform the Bokeh of one lens to the effect of another lens without harming the sharp foreground regions in the image.
no code implementations • ICCV 2023 • Steven Tel, Zongwei Wu, Yulun Zhang, Barthélémy Heyrman, Cédric Demonceaux, Radu Timofte, Dominique Ginhac
The spatial attention aims to deal with the intra-image correlation to model the dynamic motion, while the channel attention enables the inter-image intertwining to enhance the semantic consistency across frames.
4 code implementations • CVPR 2024 • Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen, Radu Timofte, Luc van Gool
These components enable the net training to follow the principles of the natural sensing-imaging process while satisfying the equivariant imaging prior.
1 code implementation • 17 May 2023 • Zongwei Wu, Jingjing Wang, Zhuyun Zhou, Zhaochong An, Qiuping Jiang, Cédric Demonceaux, Guolei Sun, Radu Timofte
In this paper, we propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features, with the aim of controlling the modal contribution based on relative entropy.
3 code implementations • 15 May 2023 • Yuanzhi Zhu, Kai Zhang, Jingyun Liang, JieZhang Cao, Bihan Wen, Radu Timofte, Luc van Gool
Although diffusion models have shown impressive performance for high-quality image synthesis, their potential to serve as a generative denoiser prior to the plug-and-play IR methods remains to be further explored.
no code implementations • 30 Apr 2023 • Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis, Radu Timofte, Martin Danelljan, Luc van Gool
Thus, by independently sampling a variant for each gene and combining them into the final latent vector, our approach can represent a vast number of unique latent samples from a compact set of learnable parameters.
2 code implementations • 28 Apr 2023 • Zhuyun Zhou, Zongwei Wu, Danda Pani Paudel, Rémi Boutteau, Fan Yang, Luc van Gool, Radu Timofte, Dominique Ginhac
Subsequently, we devise EmoFormer, a novel network able to exploit the event data.
1 code implementation • 20 Apr 2023 • Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang Yang, Radu Timofte, Yulan Guo
In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4.
no code implementations • CVPR 2023 • Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, Luc van Gool
Accordingly, we introduce an approach that performs continuous modeling of per-pixel depth, where we can predict and reason about the per-pixel depth and its distribution.
no code implementations • ICCV 2023 • Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan, Shuang Xu, Yulun Zhang, Radu Timofte, Luc van Gool
Then, the extracted features are mapped to the spherical space to complete the separation of private features and the alignment of shared features.
no code implementations • CVPR 2023 • Hao Tang, Zhenyu Zhang, Humphrey Shi, Bo Li, Ling Shao, Nicu Sebe, Radu Timofte, Luc van Gool
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
4 code implementations • ICCV 2023 • Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, Luc van Gool
To leverage strong generative priors and address challenges such as unstable training and lack of interpretability for GAN-based generative methods, we propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM).
5 code implementations • ICCV 2023 • Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, Yulun Zhang
When enhancing low-light images, many deep learning algorithms are based on the Retinex theory.
Ranked #1 on
Low-Light Image Enhancement
on SMID
Low-light Image Deblurring and Enhancement
Low-Light Image Enhancement
+3
1 code implementation • CVPR 2023 • Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, Luc van Gool
The aim of this paper is to propose a mechanism to efficiently and explicitly model image hierarchies in the global, regional, and local range for image restoration.
Ranked #1 on
Image Defocus Deblurring
on DPD (Dual-view)
2 code implementations • 13 Feb 2023 • Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, Luc van Gool
While state-of-the-art deep neural network methods for SIDP learn the scene depth from images in a supervised setting, they often overlook the invaluable invariances and priors in the rigid scene space, such as the regularity of the scene.
Ranked #31 on
Monocular Depth Estimation
on NYU-Depth V2
1 code implementation • 4 Jan 2023 • Maxime Burchi, Radu Timofte
We improve previous lip reading methods using an Efficient Conformer back-end on top of a ResNet-18 visual front-end and by adding intermediate CTC losses between blocks.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
1 code implementation • ICCV 2023 • Zilin Fang, Andrey Ignatov, Eduard Zamfir, Radu Timofte
Smartphone photography is becoming increasingly popular, but fitting high-performing camera systems within the given space limitations remains a challenge for manufacturers.
1 code implementation • ICCV 2023 • Zongwei Wu, Danda Pani Paudel, Deng-Ping Fan, Jingjing Wang, Shuo Wang, Cédric Demonceaux, Radu Timofte, Luc van Gool
In this work, we adapt such depth inference models for object segmentation using the objects' "pop-out" prior in 3D.
1 code implementation • CVPR 2023 • JieZhang Cao, Qin Wang, Yongqin Xian, Yawei Li, Bingbing Ni, Zhiming Pi, Kai Zhang, Yulun Zhang, Radu Timofte, Luc van Gool
We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features.
1 code implementation • 30 Nov 2022 • Bin Xia, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, Radu Timofte, Luc van Gool
It consists of a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network.
3 code implementations • CVPR 2023 • Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Shuang Xu, Zudi Lin, Radu Timofte, Luc van Gool
We then introduce a dual-branch Transformer-CNN feature extractor with Lite Transformer (LT) blocks leveraging long-range attention to handle low-frequency global features and Invertible Neural Networks (INN) blocks focusing on extracting high-frequency local information.
1 code implementation • 25 Nov 2022 • Marcos V. Conde, Florin Vasluianu, Sabari Nathan, Radu Timofte
We propose a lightweight model for blind UDC Image Restoration and HDR, and we also provide a benchmark comparing the performance and runtime of different methods on smartphones.
1 code implementation • 13 Nov 2022 • Ren Yang, Radu Timofte, Luc van Gool
In this paper, we propose an Advanced Learned Video Compression (ALVC) approach with the in-loop frame prediction module, which is able to effectively predict the target frame from the previously compressed frames, without consuming any bit-rate.
1 code implementation • 8 Nov 2022 • Andrey Ignatov, Grigory Malivenko, Radu Timofte, Yu Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang, Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, Luc van Gool
The increased importance of mobile photography created a need for fast and performant RAW image processing pipelines capable of producing good visual results in spite of the mobile camera sensor limitations.
no code implementations • 8 Nov 2022 • Andrey Ignatov, Anastasia Sycheva, Radu Timofte, Yu Tseng, Yu-Syuan Xu, Po-Hsiang Yu, Cheng-Ming Chiang, Hsien-Kai Kuo, Min-Hung Chen, Chia-Ming Cheng, Luc van Gool
While neural networks-based photo processing solutions can provide a better image quality compared to the traditional ISP systems, their application to mobile devices is still very limited due to their very high computational complexity.
2 code implementations • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He
While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints.
no code implementations • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Cheng-Ming Chiang, Hsien-Kai Kuo, Yu-Syuan Xu, Man-Yu Lee, Allen Lu, Chia-Ming Cheng, Chih-Cheng Chen, Jia-Ying Yong, Hong-Han Shuai, Wen-Huang Cheng, Zhuang Jia, Tianyu Xu, Yijian Zhang, Long Bao, Heng Sun, Diankai Zhang, Si Gao, Shaoli Liu, Biao Wu, Xiaofeng Zhang, Chengjian Zheng, Kaidi Lu, Ning Wang, Xiao Sun, HaoDong Wu, Xuncheng Liu, Weizhan Zhang, Caixia Yan, Haipeng Du, Qinghua Zheng, Qi Wang, Wangdu Chen, Ran Duan, Mengdi Sun, Dan Zhu, Guannan Chen, Hojin Cho, Steve Kim, Shijie Yue, Chenghua Li, Zhengyang Zhuge, Wei Chen, Wenxu Wang, Yufeng Zhou, Xiaochen Cai, Hengxing Cai, Kele Xu, Li Liu, Zehua Cheng, Wenyi Lian, Wenjing Lian
While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices.
no code implementations • 7 Nov 2022 • Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl, Yujie Ma, Zhenyu Li, Zehui Chen, Jialei Xu, Xianming Liu, Junjun Jiang, XueChao Shi, Difan Xu, Yanan Li, Xiaotao Wang, Lei Lei, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Jiaqi Li, Yiran Wang, Zihao Huang, Zhiguo Cao, Marcos V. Conde, Denis Sapozhnikov, Byeong Hyun Lee, Dongwon Park, Seongmin Hong, Joonhee Lee, Seunggyu Lee, Se Young Chun
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks.
no code implementations • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Jin Zhang, Feng Zhang, Gaocheng Yu, Zhe Ma, Hongbin Wang, Minsu Kwon, Haotian Qian, Wentao Tong, Pan Mu, Ziping Wang, Guangjing Yan, Brian Lee, Lei Fei, Huaijin Chen, Hyebin Cho, Byeongjun Kwon, Munchurl Kim, Mingyang Qian, Huixin Ma, Yanan Li, Xiaotao Wang, Lei Lei
In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based bokeh effect rendering approach that can run on modern smartphone GPUs using TensorFlow Lite.
1 code implementation • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Ziyao Yi, Yan Xiang, Zibin Liu, Shaoqing Li, Keming Shi, Dehui Kong, Ke Xu, Minsu Kwon, Yaqi Wu, Jiesi Zheng, Zhihao Fan, Xun Wu, Feng Zhang, Albert No, Minhyeok Cho, Zewen Chen, Xiaze Zhang, Ran Li, Juan Wang, Zhiming Wang, Marcos V. Conde, Ui-Jin Choi, Georgy Perevozchikov, Egor Ershov, Zheng Hui, Mengchuan Dong, Xin Lou, Wei Zhou, Cong Pang, Haina Qin, Mingxuan Cai
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing.
1 code implementation • 24 Oct 2022 • Marcos V. Conde, Florin Vasluianu, Javier Vazquez-Corral, Radu Timofte
Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks.
1 code implementation • 20 Oct 2022 • Marcos V. Conde, Radu Timofte, Yibin Huang, Jingyang Peng, Chang Chen, Cheng Li, Eduardo Pérez-Pellitero, Fenglong Song, Furui Bai, Shuai Liu, Chaoyu Feng, Xiaotao Wang, Lei Lei, Yu Zhu, Chenghua Li, Yingying Jiang, Yong A, Peisong Wang, Cong Leng, Jian Cheng, Xiaoyu Liu, Zhicun Yin, Zhilu Zhang, Junyi Li, Ming Liu, WangMeng Zuo, Jun Jiang, Jinha Kim, Yue Zhang, Beiji Zou, Zhikai Zong, Xiaoxiao Liu, Juan Marín Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Furkan Kınlı, Barış Özcan, Furkan Kıraç, Li Leyi, SM Nadim Uddin, Dipon Kumar Ghosh, Yong Ju Jung
Cameras capture sensor RAW images and transform them into pleasant RGB images, suitable for the human eyes, using their integrated Image Signal Processor (ISP).
1 code implementation • 17 Oct 2022 • Furkan Kınlı, Sami Menteş, Barış Özcan, Furkan Kıraç, Radu Timofte, Yi Zuo, Zitao Wang, Xiaowen Zhang, Yu Zhu, Chenghua Li, Cong Leng, Jian Cheng, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Tianzhi Ma, Zihan Gao, Wenxin He, Woon-Ha Yeo, Wang-Taek Oh, Young-Il Kim, Han-Cheol Ryu, Gang He, Shaoyi Long, S. M. A. Sharif, Rizwan Ali Naqvi, Sungjun Kim, Guisik Kim, Seohyeon Lee, Sabari Nathan, Priya Kansal
This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal.
1 code implementation • 10 Oct 2022 • Yitong Xia, Hao Tang, Radu Timofte, Luc van Gool
NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks, i. e., reconstructing real-world scenes and registering camera parameters simultaneously.
2 code implementations • 2 Oct 2022 • Bin Xia, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, Radu Timofte, Luc van Gool
In this study, we reconsider components in binary convolution, such as residual connection, BatchNorm, activation function, and structure, for IR tasks.
5 code implementations • 22 Sep 2022 • Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte
Using this method we can tackle the major issues in training transformer vision models, such as training instability, resolution gaps between pre-training and fine-tuning, and hunger on data.
no code implementations • 25 Aug 2022 • JieZhang Cao, Qin Wang, Jingyun Liang, Yulun Zhang, Kai Zhang, Radu Timofte, Luc van Gool
To this end, we propose a new multi-scale refined optical flow-guided video denoising method, which is more robust to different noise levels.
Ranked #1 on
Video Denoising
on VideoLQ
3 code implementations • 23 Aug 2022 • Ren Yang, Radu Timofte, Qi Zhang, Lin Zhang, Fanglong Liu, Dongliang He, Fu Li, He Zheng, Weihang Yuan, Pavel Ostyakov, Dmitry Vyal, Magauiya Zhussip, Xueyi Zou, Youliang Yan, Lei LI, Jingzhu Tang, Ming Chen, Shijie Zhao, Yu Zhu, Xiaoran Qin, Chenghua Li, Cong Leng, Jian Cheng, Claudio Rota, Marco Buzzelli, Simone Bianco, Raimondo Schettini, Dafeng Zhang, Feiyu Huang, Shizhuo Liu, Xiaobing Wang, Zhezhu Jin, Bingchen Li, Xin Li, Mingxi Li, Ding Liu, Wenbin Zou, Peijie Dong, Tian Ye, Yunchen Zhang, Ming Tan, Xin Niu, Mustafa Ayazoglu, Marcos Conde, Ui-Jin Choi, Zhuang Jia, Tianyu Xu, Yijian Zhang, Mao Ye, Dengyan Luo, Xiaofeng Pan, Liuhan Peng
The homepage of this challenge is at https://github. com/RenYang-home/AIM22_CompressSR.
1 code implementation • 29 Jun 2022 • Sherwin Bahmani, Jeong Joon Park, Despoina Paschalidou, Hao Tang, Gordon Wetzstein, Leonidas Guibas, Luc van Gool, Radu Timofte
Generative models have emerged as an essential building block for many image synthesis and editing tasks.
no code implementations • 23 Jun 2022 • Jinjin Gu, Haoming Cai, Chao Dong, Jimmy S. Ren, Radu Timofte
This challenge is divided into two tracks, a full-reference IQA track similar to the previous NTIRE IQA challenge and a new track that focuses on the no-reference IQA methods.
4 code implementations • 5 Jun 2022 • Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green, JieZhang Cao, Kai Zhang, Radu Timofte, Luc van Gool
Specifically, RVRT divides the video into multiple clips and uses the previously inferred clip feature to estimate the subsequent clip feature.
no code implementations • 25 May 2022 • Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Richard Shaw, Aleš Leonardis, Radu Timofte, Zexin Zhang, Cen Liu, Yunbo Peng, Yue Lin, Gaocheng Yu, Jin Zhang, Zhe Ma, Hongbin Wang, Xiangyu Chen, Xintao Wang, Haiwei Wu, Lin Liu, Chao Dong, Jiantao Zhou, Qingsen Yan, Song Zhang, Weiye Chen, Yuhang Liu, Zhen Zhang, Yanning Zhang, Javen Qinfeng Shi, Dong Gong, Dan Zhu, Mengdi Sun, Guannan Chen, Yang Hu, Haowei Li, Baozhu Zou, Zhen Liu, Wenjie Lin, Ting Jiang, Chengzhi Jiang, Xinpeng Li, Mingyan Han, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Juan Marín-Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Chunyang Li, Long Bao, Gang He, Ziyao Xu, Li Xu, Gen Zhan, Ming Sun, Xing Wen, Junlin Li, Shuang Feng, Fei Lei, Rui Liu, Junxiang Ruan, Tianhong Dai, Wei Li, Zhan Lu, Hengyan Liu, Peian Huang, Guangyu Ren, Yonglin Luo, Chang Liu, Qiang Tu, Fangya Li, Ruipeng Gang, Chenghua Li, Jinjing Li, Sai Ma, Chenming Liu, Yizhen Cao, Steven Tel, Barthelemy Heyrman, Dominique Ginhac, Chul Lee, Gahyeon Kim, Seonghyun Park, An Gia Vien, Truong Thanh Nhat Mai, Howoon Yoon, Tu Vo, Alexander Holston, Sheir Zaheer, Chan Y. Park
The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i. e. solutions can not exceed a given number of operations).
1 code implementation • 20 May 2022 • Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Henghui Ding, Yulun Zhang, Radu Timofte, Luc van Gool
In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from a compressed measurement.
Ranked #1 on
Spectral Reconstruction
on Real HSI
1 code implementation • CVPR 2022 • Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, Luc van Gool
The proposed approach provides a new way to compare different methods, namely how well they behave compared with random pruning.
2 code implementations • 11 May 2022 • Yawei Li, Kai Zhang, Radu Timofte, Luc van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, Jingyi Chen, Qingrui Han, Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Yu Qiao, Chao Dong, Long Sun, Jinshan Pan, Yi Zhu, Zhikai Zong, Xiaoxiao Liu, Zheng Hui, Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Yanbo Wang, Xiaozhong Ji, Chuming Lin, Donghao Luo, Ying Tai, Chengjie Wang, Zhizhong Zhang, Yuan Xie, Shen Cheng, Ziwei Luo, Lei Yu, Zhihong Wen, Qi Wu1, Youwei Li, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Yuanfei Huang, Meiguang Jin, Hua Huang, Jing Liu, Xinjian Zhang, Yan Wang, Lingshun Long, Gen Li, Yuanfan Zhang, Zuowei Cao, Lei Sun, Panaetov Alexander, Yucong Wang, Minjie Cai, Li Wang, Lu Tian, Zheyuan Wang, Hongbing Ma, Jie Liu, Chao Chen, Yidong Cai, Jie Tang, Gangshan Wu, Weiran Wang, Shirui Huang, Honglei Lu, Huan Liu, Keyan Wang, Jun Chen, Shi Chen, Yuchun Miao, Zimo Huang, Lefei Zhang, Mustafa Ayazoğlu, Wei Xiong, Chengyi Xiong, Fei Wang, Hao Li, Ruimian Wen, Zhijing Yang, Wenbin Zou, Weixin Zheng, Tian Ye, Yuncheng Zhang, Xiangzhen Kong, Aditya Arora, Syed Waqas Zamir, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Dandan Gaoand Dengwen Zhouand Qian Ning, Jingzhu Tang, Han Huang, YuFei Wang, Zhangheng Peng, Haobo Li, Wenxue Guan, Shenghua Gong, Xin Li, Jun Liu, Wanjun Wang, Dengwen Zhou, Kun Zeng, Hanjiang Lin, Xinyu Chen, Jinsheng Fang
The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29. 00dB on DIV2K validation set.
1 code implementation • 27 Apr 2022 • Marcos V. Conde, Maxime Burchi, Radu Timofte
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
2 code implementations • 20 Apr 2022 • Ren Yang, Radu Timofte, Meisong Zheng, Qunliang Xing, Minglang Qiao, Mai Xu, Lai Jiang, Huaida Liu, Ying Chen, Youcheng Ben, Xiao Zhou, Chen Fu, Pei Cheng, Gang Yu, Junyi Li, Renlong Wu, Zhilu Zhang, Wei Shang, Zhengyao Lv, Yunjin Chen, Mingcai Zhou, Dongwei Ren, Kai Zhang, WangMeng Zuo, Pavel Ostyakov, Vyal Dmitry, Shakarim Soltanayev, Chervontsev Sergey, Zhussip Magauiya, Xueyi Zou, Youliang Yan, Pablo Navarrete Michelini, Yunhua Lu, Diankai Zhang, Shaoli Liu, Si Gao, Biao Wu, Chengjian Zheng, Xiaofeng Zhang, Kaidi Lu, Ning Wang, Thuong Nguyen Canh, Thong Bach, Qing Wang, Xiaopeng Sun, Haoyu Ma, Shijie Zhao, Junlin Li, Liangbin Xie, Shuwei Shi, Yujiu Yang, Xintao Wang, Jinjin Gu, Chao Dong, Xiaodi Shi, Chunmei Nian, Dong Jiang, Jucai Lin, Zhihuai Xie, Mao Ye, Dengyan Luo, Liuhan Peng, Shengjie Chen, Qian Wang, Xin Liu, Boyang Liang, Hang Dong, Yuhao Huang, Kai Chen, Xingbei Guo, Yujing Sun, Huilei Wu, Pengxu Wei, Yulin Huang, Junying Chen, Ik Hyun Lee, Sunder Ali Khowaja, Jiseok Yoon
This challenge includes three tracks.
no code implementations • 20 Apr 2022 • Longguang Wang, Yulan Guo, Yingqian Wang, Juncheng Li, Shuhang Gu, Radu Timofte
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results.
3 code implementations • 17 Apr 2022 • Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, Hanspeter Pfister, Radu Timofte, Luc van Gool
Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI).
Ranked #1 on
Spectral Reconstruction
on ARAD-1K
1 code implementation • CVPR 2022 • Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis, Radu Timofte, Martin Danelljan, Luc van Gool
Positional encodings have enabled recent works to train a single adversarial network that can generate images of different scales.
2 code implementations • 24 Mar 2022 • Kai Zhang, Yawei Li, Jingyun Liang, JieZhang Cao, Yulun Zhang, Hao Tang, Deng-Ping Fan, Radu Timofte, Luc van Gool
While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising, existing methods mostly rely on simple noise assumptions, such as additive white Gaussian noise (AWGN), JPEG compression noise and camera sensor noise, and a general-purpose blind denoising method for real images remains unsolved.
Ranked #2 on
Image Denoising
on urban100 sigma15
no code implementations • 20 Mar 2022 • Ardhendu Shekhar Tripathi, Martin Danelljan, Samarth Shukla, Radu Timofte, Luc van Gool
We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone.
1 code implementation • 9 Mar 2022 • Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, Luc van Gool
Many algorithms have been developed to solve the inverse problem of coded aperture snapshot spectral imaging (CASSI), i. e., recovering the 3D hyperspectral images (HSIs) from a 2D compressive measurement.
Ranked #4 on
Spectral Reconstruction
on Real HSI
2 code implementations • CVPR 2022 • Xiaowan Hu, Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, Luc van Gool
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
Ranked #7 on
Spectral Reconstruction
on Real HSI
no code implementations • 3 Feb 2022 • Dario Fuoli, Martin Danelljan, Radu Timofte, Luc van Gool
Our DAP aligns and integrates information from the recurrent state into the current frame prediction.
1 code implementation • 28 Jan 2022 • Jingyun Liang, JieZhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc van Gool
Besides, parallel warping is used to further fuse information from neighboring frames by parallel feature warping.
Ranked #1 on
Deblurring
on BASED
3 code implementations • CVPR 2022 • Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc van Gool
In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks.
1 code implementation • 6 Jan 2022 • Jing Lin, Yuanhao Cai, Xiaowan Hu, Haoqian Wang, Youliang Yan, Xueyi Zou, Henghui Ding, Yulun Zhang, Radu Timofte, Luc van Gool
Exploiting similar and sharper scene patches in spatio-temporal neighborhoods is critical for video deblurring.
Ranked #1 on
Deblurring
on DVD
1 code implementation • CVPR 2022 • Zipeng Xu, Tianwei Lin, Hao Tang, Fu Li, Dongliang He, Nicu Sebe, Radu Timofte, Luc van Gool, Errui Ding
We propose a novel framework, i. e., Predict, Prevent, and Evaluate (PPE), for disentangled text-driven image manipulation that requires little manual annotation while being applicable to a wide variety of manipulations.
1 code implementation • 19 Nov 2021 • Guanglei Yang, Hao Tang, Humphrey Shi, Mingli Ding, Nicu Sebe, Radu Timofte, Luc van Gool, Elisa Ricci
The global alignment network aims to transfer the input image from the source domain to the target domain.
4 code implementations • CVPR 2022 • Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, Luc van Gool
The HSI representations are highly similar and correlated across the spectral dimension.
Ranked #2 on
Spectral Reconstruction
on ARAD-1K
no code implementations • 5 Nov 2021 • Andreas Lugmayr, Martin Danelljan, Fisher Yu, Luc van Gool, Radu Timofte
Super-resolution is an ill-posed problem, where a ground-truth high-resolution image represents only one possibility in the space of plausible solutions.
2 code implementations • ICCV 2021 • Jiaxi Jiang, Kai Zhang, Radu Timofte
Training a single deep blind model to handle different quality factors for JPEG image artifacts removal has been attracting considerable attention due to its convenience for practical usage.
no code implementations • 29 Sep 2021 • Adrian Lang, Christoph Mayer, Radu Timofte
We emphasize aspects such as the importance of using data augmentation, the need of separating the contribution of a classification network and the acquisition strategy to the overall performance, the advantages that a proper initialization of the network can bring to AL.
1 code implementation • 28 Sep 2021 • Prune Truong, Martin Danelljan, Radu Timofte, Luc van Gool
In order to apply dense methods to real-world applications, such as pose estimation, image manipulation, or 3D reconstruction, it is therefore crucial to estimate the confidence of the predicted matches.
3 code implementations • 7 Sep 2021 • Ren Yang, Radu Timofte, Luc van Gool
This paper proposes a Perceptual Learned Video Compression (PLVC) approach with recurrent conditional GAN.
1 code implementation • 25 Aug 2021 • Angela Castillo, María Escobar, Juan C. Pérez, Andrés Romero, Radu Timofte, Luc van Gool, Pablo Arbeláez
Instead of learning a dataset-specific degradation, we employ adversarial attacks to create difficult examples that target the model's weaknesses.
9 code implementations • 23 Aug 2021 • Jingyun Liang, JieZhang Cao, Guolei Sun, Kai Zhang, Luc van Gool, Radu Timofte
In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection.
Ranked #2 on
Grayscale Image Denoising
on Urban100 sigma15
2 code implementations • ICCV 2021 • Goutam Bhat, Martin Danelljan, Fisher Yu, Luc van Gool, Radu Timofte
The deep reparametrization allows us to directly model the image formation process in the latent space, and to integrate learned image priors into the prediction.
Ranked #6 on
Burst Image Super-Resolution
on BurstSR
1 code implementation • ICCV 2021 • Jingyun Liang, Guolei Sun, Kai Zhang, Luc van Gool, Radu Timofte
Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.
1 code implementation • ICCV 2021 • Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin Danelljan, Luc van Gool, Radu Timofte
More specifically, HCFlow learns a bijective mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
Ranked #4 on
Image Rescaling
on DIV2K val-q30-4x
no code implementations • 2 Jul 2021 • Jerrick Liu, Nathan Inkawhich, Oliver Nina, Radu Timofte, Sahil Jain, Bob Lee, Yuru Duan, Wei Wei, Lei Zhang, Songzheng Xu, Yuxuan Sun, Jiaqi Tang, Mengru Ma, Gongzhe Li, Xueli Geng, Huanqia Cai, Chengxue Cai, Sol Cummings, Casian Miron, Alexandru Pasarica, Cheng-Yen Yang, Hung-Min Hsu, Jiarui Cai, Jie Mei, Chia-Ying Yeh, Jenq-Neng Hwang, Michael Xin, Zhongkai Shangguan, Zihe Zheng, Xu Yifei, Lehan Yang, Kele Xu, Min Feng
In this paper, we introduce the first Challenge on Multi-modal Aerial View Object Classification (MAVOC) in conjunction with the NTIRE 2021 workshop at CVPR.
1 code implementation • CVPR 2021 • Xin Deng, Wenzhe Yang, Ren Yang, Mai Xu, Enpeng Liu, Qianhan Feng, Radu Timofte
To fully explore the mutual information across two stereo images, we use a deep regression model to estimate the homography matrix, i. e., H matrix.
no code implementations • CVPR 2022 • Rhea Sanjay Sukthanker, Zhiwu Huang, Suryansh Kumar, Radu Timofte, Luc van Gool
The key idea is to exploit a masked scheme of these two attentions to learn long-range data dependencies in the context of generative flows.
no code implementations • 7 Jun 2021 • Goutam Bhat, Martin Danelljan, Radu Timofte, Kazutoshi Akita, Wooyeong Cho, Haoqiang Fan, Lanpeng Jia, Daeshik Kim, Bruno Lecouat, Youwei Li, Shuaicheng Liu, Ziluan Liu, Ziwei Luo, Takahiro Maeda, Julien Mairal, Christian Micheloni, Xuan Mo, Takeru Oba, Pavel Ostyakov, Jean Ponce, Sanghyeok Son, Jian Sun, Norimichi Ukita, Rao Muhammad Umer, Youliang Yan, Lei Yu, Magauiya Zhussip, Xueyi Zou
This paper reviews the NTIRE2021 challenge on burst super-resolution.
1 code implementation • 2 Jun 2021 • Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Aleš Leonardis, Radu Timofte
This paper reviews the first challenge on high-dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2021.
no code implementations • ICCV 2021 • Dario Fuoli, Luc van Gool, Radu Timofte
As large models are often not practical in real-world applications, we investigate and propose novel loss functions, to enable SR with high perceptual quality from much more efficient models.
no code implementations • 17 May 2021 • Andrey Ignatov, Grigory Malivenko, Radu Timofte, Sheng Chen, Xin Xia, Zhaoyan Liu, Yuwei Zhang, Feng Zhu, Jiashi Li, Xuefeng Xiao, Yuan Tian, Xinglong Wu, Christos Kyrkou, Yixin Chen, Zexin Zhang, Yunbo Peng, Yue Lin, Saikat Dutta, Sourya Dipta Das, Nisarg A. Shah, Himanshu Kumar, Chao Ge, Pei-Lin Wu, Jin-Hua Du, Andrew Batutin, Juan Pablo Federico, Konrad Lyda, Levon Khojoyan, Abhishek Thanki, Sayak Paul, Shahid Siddiqui
To address this problem, we introduce the first Mobile AI challenge, where the target is to develop quantized deep learning-based camera scene classification solutions that can demonstrate a real-time performance on smartphones and IoT platforms.
no code implementations • 17 May 2021 • Andrey Ignatov, Andres Romero, Heewon Kim, Radu Timofte, Chiu Man Ho, Zibo Meng, Kyoung Mu Lee, Yuxiang Chen, Yutong Wang, Zeyu Long, Chenhao Wang, Yifei Chen, Boshen Xu, Shuhang Gu, Lixin Duan, Wen Li, Wang Bofei, Zhang Diankai, Zheng Chengjian, Liu Shaoli, Gao Si, Zhang Xiaofeng, Lu Kaidi, Xu Tianyu, Zheng Hui, Xinbo Gao, Xiumei Wang, Jiaming Guo, Xueyi Zhou, Hao Jia, Youliang Yan
Video super-resolution has recently become one of the most important mobile-related problems due to the rise of video communication and streaming services.
1 code implementation • 17 May 2021 • Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Andrew Lek, Mustafa Ayazoglu, Jie Liu, Zongcai Du, Jiaming Guo, Xueyi Zhou, Hao Jia, Youliang Yan, Zexin Zhang, Yixin Chen, Yunbo Peng, Yue Lin, Xindong Zhang, Hui Zeng, Kun Zeng, Peirong Li, Zhihuang Liu, Shiqi Xue, Shengpeng Wang
Image super-resolution is one of the most popular computer vision problems with many important applications to mobile devices.
2 code implementations • 17 May 2021 • Andrey Ignatov, Cheng-Ming Chiang, Hsien-Kai Kuo, Anastasia Sycheva, Radu Timofte, Min-Hung Chen, Man-Yu Lee, Yu-Syuan Xu, Yu Tseng, Shusong Xu, Jin Guo, Chao-Hung Chen, Ming-Chun Hsyu, Wen-Chia Tsai, Chao-Wei Chen, Grigory Malivenko, Minsu Kwon, Myungje Lee, Jaeyoon Yoo, Changbeom Kang, Shinjo Wang, Zheng Shaolong, Hao Dejun, Xie Fen, Feng Zhuang, Yipeng Ma, Jingyang Peng, Tao Wang, Fenglong Song, Chih-Chung Hsu, Kwan-Lin Chen, Mei-Hsuang Wu, Vishal Chudasama, Kalpesh Prajapati, Heena Patel, Anjali Sarvaiya, Kishor Upla, Kiran Raja, Raghavendra Ramachandra, Christoph Busch, Etienne de Stoutz
As the quality of mobile cameras starts to play a crucial role in modern smartphones, more and more attention is now being paid to ISP algorithms used to improve various perceptual aspects of mobile photos.
no code implementations • 17 May 2021 • Angeline Pouget, Sidharth Ramesh, Maximilian Giang, Ramithan Chandrapalan, Toni Tanner, Moritz Prussing, Radu Timofte, Andrey Ignatov
AI-powered automatic camera scene detection mode is nowadays available in nearly any modern smartphone, though the problem of accurate scene prediction has not yet been addressed by the research community.
no code implementations • 17 May 2021 • Andrey Ignatov, Grigory Malivenko, David Plowman, Samarth Shukla, Radu Timofte, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Yiran Wang, Xingyi Li, Min Shi, Ke Xian, Zhiguo Cao, Jin-Hua Du, Pei-Lin Wu, Chao Ge, Jiaoyang Yao, Fangwen Tu, Bo Li, Jung Eun Yoo, Kwanggyoon Seo, Jialei Xu, Zhenyu Li, Xianming Liu, Junjun Jiang, Wei-Chi Chen, Shayan Joya, Huanhuan Fan, Zhaobing Kang, Ang Li, Tianpeng Feng, Yang Liu, Chuannan Sheng, Jian Yin, Fausto T. Benavide
While many solutions have been proposed for this task, they are usually very computationally expensive and thus are not applicable for on-device inference.
1 code implementation • 17 May 2021 • Andrey Ignatov, Kim Byeoung-su, Radu Timofte, Angeline Pouget, Fenglong Song, Cheng Li, Shuai Xiao, Zhongqian Fu, Matteo Maggioni, Yibin Huang, Shen Cheng, Xin Lu, Yifeng Zhou, Liangyu Chen, Donghao Liu, Xiangyu Zhang, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Minsu Kwon, Myungje Lee, Jaeyoon Yoo, Changbeom Kang, Shinjo Wang, Bin Huang, Tianbao Zhou, Shuai Liu, Lei Lei, Chaoyu Feng, Liguang Huang, Zhikun Lei, Feifei Chen
A detailed description of all models developed in the challenge is provided in this paper.
no code implementations • 7 May 2021 • Jinjin Gu, Haoming Cai, Chao Dong, Jimmy S. Ren, Yu Qiao, Shuhang Gu, Radu Timofte, Manri Cheon, SungJun Yoon, Byungyeon Kang, Junwoo Lee, Qing Zhang, Haiyang Guo, Yi Bin, Yuqing Hou, Hengliang Luo, Jingyu Guo, ZiRui Wang, Hai Wang, Wenming Yang, Qingyan Bai, Shuwei Shi, Weihao Xia, Mingdeng Cao, Jiahao Wang, Yifan Chen, Yujiu Yang, Yang Li, Tao Zhang, Longtao Feng, Yiting Liao, Junlin Li, William Thong, Jose Costa Pereira, Ales Leonardis, Steven McDonagh, Kele Xu, Lehan Yang, Hengxing Cai, Pengfei Sun, Seyed Mehdi Ayyoubzadeh, Ali Royat, Sid Ahmed Fezza, Dounia Hammou, Wassim Hamidouche, Sewoong Ahn, Gwangjin Yoon, Koki Tsubota, Hiroaki Akutsu, Kiyoharu Aizawa
This paper reports on the NTIRE 2021 challenge on perceptual image quality assessment (IQA), held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) workshop at CVPR 2021.
no code implementations • 30 Apr 2021 • Seungjun Nah, Sanghyun Son, Suyoung Lee, Radu Timofte, Kyoung Mu Lee
In this challenge report, we describe the challenge specifics and the evaluation results from the 2 competition tracks with the proposed solutions.
no code implementations • 30 Apr 2021 • Sanghyun Son, Suyoung Lee, Seungjun Nah, Radu Timofte, Kyoung Mu Lee
Super-Resolution (SR) is a fundamental computer vision task that aims to obtain a high-resolution clean image from the given low-resolution counterpart.
3 code implementations • 27 Apr 2021 • Majed El Helou, Ruofan Zhou, Sabine Susstrunk, Radu Timofte
In this paper, we review the NTIRE 2021 depth guided image relighting challenge.
1 code implementation • 21 Apr 2021 • Ren Yang, Radu Timofte, Jing Liu, Yi Xu, Xinjian Zhang, Minyi Zhao, Shuigeng Zhou, Kelvin C. K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy, Xin Li, Fanglong Liu, He Zheng, Lielin Jiang, Qi Zhang, Dongliang He, Fu Li, Qingqing Dang, Yibin Huang, Matteo Maggioni, Zhongqian Fu, Shuai Xiao, Cheng Li, Thomas Tanay, Fenglong Song, Wentao Chao, Qiang Guo, Yan Liu, Jiang Li, Xiaochao Qu, Dewang Hou, Jiayu Yang, Lyn Jiang, Di You, Zhenyu Zhang, Chong Mou, Iaroslav Koshelev, Pavel Ostyakov, Andrey Somov, Jia Hao, Xueyi Zou, Shijie Zhao, Xiaopeng Sun, Yiting Liao, Yuanzhi Zhang, Qing Wang, Gen Zhan, Mengxi Guo, Junlin Li, Ming Lu, Zhan Ma, Pablo Navarrete Michelini, Hai Wang, Yiyun Chen, Jingyu Guo, Liliang Zhang, Wenming Yang, Sijung Kim, Syehoon Oh, Yucong Wang, Minjie Cai, Wei Hao, Kangdi Shi, Liangyan Li, Jun Chen, Wei Gao, Wang Liu, XiaoYu Zhang, Linjie Zhou, Sixin Lin, Ru Wang
This paper reviews the first NTIRE challenge on quality enhancement of compressed video, with a focus on the proposed methods and results.
2 code implementations • 21 Apr 2021 • Ren Yang, Radu Timofte
In our study, we analyze the proposed methods of the challenge and several methods in previous works on the proposed LDV dataset.
no code implementations • ICCV 2021 • Yawei Li, He Chen, Zhaopeng Cui, Radu Timofte, Marc Pollefeys, Gregory Chirikjian, Luc van Gool
In this paper, we aim at improving the computational efficiency of graph convolutional networks (GCNs) for learning on point clouds.
2 code implementations • 12 Apr 2021 • Yawei Li, Kai Zhang, JieZhang Cao, Radu Timofte, Luc van Gool
The importance of locality mechanisms is validated in two ways: 1) A wide range of design choices (activation function, layer placement, expansion ratio) are available for incorporating locality mechanisms and all proper choices can lead to a performance gain over the baseline, and 2) The same locality mechanism is successfully applied to 4 vision transformers, which shows the generalization of the locality concept.
Ranked #680 on
Image Classification
on ImageNet
1 code implementation • CVPR 2021 • Jingyun Liang, Kai Zhang, Shuhang Gu, Luc van Gool, Radu Timofte
Kernel estimation is generally one of the key problems for blind image super-resolution (SR).
3 code implementations • ICCV 2021 • Kai Zhang, Jingyun Liang, Luc van Gool, Radu Timofte
It is widely acknowledged that single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
no code implementations • 9 Feb 2021 • A. Murat Tekalp, Michele Covell, Radu Timofte, Chao Dong
Recent works have shown that learned models can achieve significant performance gains, especially in terms of perceptual quality measures, over traditional methods.
3 code implementations • CVPR 2021 • Goutam Bhat, Martin Danelljan, Luc van Gool, Radu Timofte
We propose a novel architecture for the burst super-resolution task.
Ranked #8 on
Burst Image Super-Resolution
on SyntheticBurst
Burst Image Super-Resolution
Multi-Frame Super-Resolution
+1
no code implementations • 17 Jan 2021 • Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, Luc van Gool
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model.
2 code implementations • CVPR 2021 • Valentin Wolf, Andreas Lugmayr, Martin Danelljan, Luc van Gool, Radu Timofte
We propose DeFlow, a method for learning stochastic image degradations from unpaired data.
1 code implementation • ICCV 2021 • Bin Zhao, Goutam Bhat, Martin Danelljan, Luc van Gool, Radu Timofte
This effectively limits the performance and generalization capabilities of existing video segmentation methods.
4 code implementations • CVPR 2021 • Prune Truong, Martin Danelljan, Luc van Gool, Radu Timofte
Establishing dense correspondences between a pair of images is an important and general problem.
1 code implementation • 5 Jan 2021 • Matthieu Paul, Martin Danelljan, Luc van Gool, Radu Timofte
Our approach aggregates a rich representation of the semantic information in past frames into a memory module.
no code implementations • 1 Jan 2021 • Yawei Li, He Chen, Zhaopeng Cui, Radu Timofte, Marc Pollefeys, Gregory Chirikjian, Luc van Gool
State-of-the-art GCNs adopt $K$-nearest neighbor (KNN) searches for local feature aggregation and feature extraction operations from layer to layer.
no code implementations • 24 Dec 2020 • Dario Fuoli, Zhiwu Huang, Danda Pani Paudel, Luc van Gool, Radu Timofte
Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain.
1 code implementation • 11 Nov 2020 • Samarth Shukla, Andrés Romero, Luc van Gool, Radu Timofte
In this paper, we propose an approach based on domain conditional normalization (DCN) for zero-pair image-to-image translation, i. e., translating between two domains which have no paired training data available but each have paired training data with a third domain.
1 code implementation • 10 Nov 2020 • Andrey Ignatov, Radu Timofte, Zhilu Zhang, Ming Liu, Haolin Wang, WangMeng Zuo, Jiawei Zhang, Ruimao Zhang, Zhanglin Peng, Sijie Ren, Linhui Dai, Xiaohong Liu, Chengqi Li, Jun Chen, Yuichi Ito, Bhavya Vasudeva, Puneesh Deora, Umapada Pal, Zhenyu Guo, Yu Zhu, Tian Liang, Chenghua Li, Cong Leng, Zhihong Pan, Baopu Li, Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek, Magauiya Zhussip, Yeskendir Koishekenov, Hwechul Cho Ye, Xin Liu, Xueying Hu, Jun Jiang, Jinwei Gu, Kai Li, Pengliang Tan, Bingxin Hou
This paper reviews the second AIM learned ISP challenge and provides the description of the proposed solutions and results.
no code implementations • 10 Nov 2020 • Andrey Ignatov, Radu Timofte, Ming Qian, Congyu Qiao, Jiamin Lin, Zhenyu Guo, Chenghua Li, Cong Leng, Jian Cheng, Juewen Peng, Xianrui Luo, Ke Xian, Zijin Wu, Zhiguo Cao, Densen Puthussery, Jiji C V, Hrishikesh P S, Melvin Kuriakose, Saikat Dutta, Sourya Dipta Das, Nisarg A. Shah, Kuldeep Purohit, Praveen Kandula, Maitreya Suin, A. N. Rajagopalan, Saagara M B, Minnu A L, Sanjana A R, Praseeda S, Ge Wu, Xueqin Chen, Tengyao Wang, Max Zheng, Hulk Wong, Jay Zou
This paper reviews the second AIM realistic bokeh effect rendering challenge and provides the description of the proposed solutions and results.
1 code implementation • 6 Nov 2020 • Philipp Andermatt, Radu Timofte
The core part of our model, the Change Segmentation and Classification (CSC) module, learns an accurate change mask at a hidden layer by using a custom Remapping Block and then segmenting the current input image with the change mask.
no code implementations • 22 Oct 2020 • Florin-Alexandru Vasluianu, Andres Romero, Luc van Gool, Radu Timofte
Shadow removal is an important computer vision task aiming at the detection and successful removal of the shadow produced by an occluded light source and a photo-realistic restoration of the image contents.
1 code implementation • 5 Oct 2020 • Andrés Romero, Luc van Gool, Radu Timofte
Additionally, our method is capable of adding, removing or changing either fine-grained or coarse attributes by using an image as a reference or by exploring the style distribution space, and it can be easily extended to head-swapping and face-reenactment applications without being trained on videos.
3 code implementations • 2 Oct 2020 • Evangelos Ntavelis, Andrés Romero, Siavash Bigdeli, Radu Timofte
This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semantically guided image inpainting.
1 code implementation • 1 Oct 2020 • Ardhendu Shekhar Tripathi, Martin Danelljan, Luc van Gool, Radu Timofte
By employing an efficient initialization module and a Steepest Descent based optimization algorithm, our base learner predicts a powerful classifier within only a few iterations.
1 code implementation • 29 Sep 2020 • Cristian Cioflan, Radu Timofte
Neural Architecture Search (NAS) has proved effective in offering outperforming alternatives to handcrafted neural networks.
no code implementations • 28 Sep 2020 • Sanghyun Son, Jaerin Lee, Seungjun Nah, Radu Timofte, Kyoung Mu Lee
Videos in the real-world contain various dynamics and motions that may look unnaturally discontinuous in time when the recordedframe rate is low.
1 code implementation • 27 Sep 2020 • Yannick Strümpler, Ren Yang, Radu Timofte
Therefore, we propose learning to improve the encoding performance with the standard decoder.
2 code implementations • 27 Sep 2020 • Majed El Helou, Ruofan Zhou, Sabine Süsstrunk, Radu Timofte, Mahmoud Afifi, Michael S. Brown, Kele Xu, Hengxing Cai, Yuzhong Liu, Li-Wen Wang, Zhi-Song Liu, Chu-Tak Li, Sourya Dipta Das, Nisarg A. Shah, Akashdeep Jassal, Tongtong Zhao, Shanshan Zhao, Sabari Nathan, M. Parisa Beham, R. Suganya, Qing Wang, Zhongyun Hu, Xin Huang, Yaning Li, Maitreya Suin, Kuldeep Purohit, A. N. Rajagopalan, Densen Puthussery, Hrishikesh P. S, Melvin Kuriakose, Jiji C. V, Yu Zhu, Liping Dong, Zhuolong Jiang, Chenghua Li, Cong Leng, Jian Cheng
The first track considered one-to-one relighting; the objective was to relight an input photo of a scene with a different color temperature and illuminant orientation (i. e., light source position).
no code implementations • 25 Sep 2020 • Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, WangMeng Zuo, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Tangxin Xie, Liang Cao, Yan Zou, Yi Shen, Jialiang Zhang, Yu Jia, Kaihua Cheng, Chenhuan Wu, Yue Lin, Cen Liu, Yunbo Peng, Xueyi Zou, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Tongtong Zhao, Shanshan Zhao, Yoseob Han, Byung-Hoon Kim, JaeHyun Baek, HaoNing Wu, Dejia Xu, Bo Zhou, Wei Guan, Xiaobo Li, Chen Ye, Hao Li, Yukai Shi, Zhijing Yang, Xiaojun Yang, Haoyu Zhong, Xin Li, Xin Jin, Yaojun Wu, Yingxue Pang, Sen Liu, Zhi-Song Liu, Li-Wen Wang, Chu-Tak Li, Marie-Paule Cani, Wan-Chi Siu, Yuanbo Zhou, Rao Muhammad Umer, Christian Micheloni, Xiaofeng Cong, Rajat Gupta, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Feras Almasri, Thomas Vandamme, Olivier Debeir
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020.