no code implementations • 14 Sep 2023 • Benjamin D. Kim, Vipindev Adat Vasudevan, Jongchan Woo, Alejandro Cohen, Rafael G. L. D'Oliveira, Thomas Stahlbuhk, Muriel Médard
The use of Mutual Information (MI) as a measure to evaluate the efficiency of cryptosystems has an extensive history.
no code implementations • 11 Sep 2023 • Yuzhou Gu, Ziqi Zhou, Onur Günlü, Rafael G. L. D'Oliveira, Parastoo Sadeghi, Muriel Médard, Rafael F. Schaefer
In this framework, datasets are nodes in a graph, and two neighboring datasets are connected by an edge.
no code implementations • 31 Mar 2023 • Homa Esfahanizadeh, Adam Yala, Rafael G. L. D'Oliveira, Andrea J. D. Jaba, Victor Quach, Ken R. Duffy, Tommi S. Jaakkola, Vinod Vaikuntanathan, Manya Ghobadi, Regina Barzilay, Muriel Médard
Allowing organizations to share their data for training of machine learning (ML) models without unintended information leakage is an open problem in practice.
no code implementations • 8 Feb 2022 • Ziqi Zhou, Onur Günlü, Rafael G. L. D'Oliveira, Muriel Médard, Parastoo Sadeghi, Rafael F. Schaefer
We extend a previous framework for designing differentially private (DP) mechanisms via randomized graph colorings that was restricted to binary functions, corresponding to colorings in a graph, to multi-valued functions.
no code implementations • 28 Jan 2022 • Adam Yala, Victor Quach, Homa Esfahanizadeh, Rafael G. L. D'Oliveira, Ken R. Duffy, Muriel Médard, Tommi S. Jaakkola, Regina Barzilay
We quantify privacy as the number of attacker guesses required to re-identify a single image (guesswork).
9 code implementations • 10 Dec 2019 • Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches.