no code implementations • 21 Jan 2025 • Shramana Dey, Pallabi Dutta, Riddhasree Bhattacharyya, Surochita Pal, Sushmita Mitra, Rajiv Raman
The prevalence of ocular illnesses is growing globally, presenting a substantial public health challenge.
no code implementations • 6 Nov 2020 • Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley
Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains.
no code implementations • 26 Sep 2020 • Amitojdeep Singh, J. Jothi Balaji, Mohammed Abdul Rasheed, Varadharajan Jayakumar, Rajiv Raman, Vasudevan Lakshminarayanan
The explanations from 13 different attribution methods were rated by a panel of 14 clinicians for clinical significance.
no code implementations • 18 Oct 2018 • Paisan Raumviboonsuk, Jonathan Krause, Peranut Chotcomwongse, Rory Sayres, Rajiv Raman, Kasumi Widner, Bilson J L Campana, Sonia Phene, Kornwipa Hemarat, Mongkol Tadarati, Sukhum Silpa-Acha, Jirawut Limwattanayingyong, Chetan Rao, Oscar Kuruvilla, Jesse Jung, Jeffrey Tan, Surapong Orprayoon, Chawawat Kangwanwongpaisan, Ramase Sukulmalpaiboon, Chainarong Luengchaichawang, Jitumporn Fuangkaew, Pipat Kongsap, Lamyong Chualinpha, Sarawuth Saree, Srirat Kawinpanitan, Korntip Mitvongsa, Siriporn Lawanasakol, Chaiyasit Thepchatri, Lalita Wongpichedchai, Greg S. Corrado, Lily Peng, Dale R. Webster
Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy.