no code implementations • 12 Sep 2022 • Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin, Todd Phillips, Cristina Pop, Kevin Regan, Gil I. Shamir, Rakesh Shivanna, Qiqi Yan
For industrial-scale advertising systems, prediction of ad click-through rate (CTR) is a central problem.
no code implementations • 2 Feb 2022 • Kiran Vodrahalli, Rakesh Shivanna, Maheswaran Sathiamoorthy, Sagar Jain, Ed H. Chi
We propose a novel low-rank initialization framework for training low-rank deep neural networks -- networks where the weight parameters are re-parameterized by products of two low-rank matrices.
9 code implementations • 19 Aug 2020 • Ruoxi Wang, Rakesh Shivanna, Derek Z. Cheng, Sagar Jain, Dong Lin, Lichan Hong, Ed H. Chi
Learning effective feature crosses is the key behind building recommender systems.
Ranked #3 on
Click-Through Rate Prediction
on Criteo
no code implementations • 10 Feb 2020 • Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H. Chi, Sagar Jain
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget.
no code implementations • 6 Nov 2018 • Aadirupa Saha, Rakesh Shivanna, Chiranjib Bhattacharyya
Our proposed algorithm, {\it Pref-Rank}, predicts the underlying ranking using an SVM based approach over the chosen embedding of the product graph, and is the first to provide \emph{statistical consistency} on two ranking losses: \emph{Kendall's tau} and \emph{Spearman's footrule}, with a required sample complexity of $O(n^2 \chi(\bar{G}))^{\frac{2}{3}}$ pairs, $\chi(\bar{G})$ being the \emph{chromatic number} of the complement graph $\bar{G}$.
no code implementations • NeurIPS 2015 • Rakesh Shivanna, Bibaswan K. Chatterjee, Raman Sankaran, Chiranjib Bhattacharyya, Francis Bach
We propose an alternative PAC-based bound, which do not depend on the VC dimension of the underlying function class, but is related to the famous Lov\'{a}sz~$\vartheta$ function.
no code implementations • NeurIPS 2014 • Rakesh Shivanna, Chiranjib Bhattacharyya
This, for the first time, relates labelled sample complexity to graph connectivity properties, such as the density of graphs.