no code implementations • 15 Apr 2024 • Francis McCann Ramirez, Luka Chkhetiani, Andrew Ehrenberg, Robert McHardy, Rami Botros, Yash Khare, Andrea Vanzo, Taufiquzzaman Peyash, Gabriel Oexle, Michael Liang, Ilya Sklyar, Enver Fakhan, Ahmed Etefy, Daniel McCrystal, Sam Flamini, Domenic Donato, Takuya Yoshioka
This paper describes AssemblyAI's industrial-scale automatic speech recognition (ASR) system, designed to meet the requirements of large-scale, multilingual ASR serving various application needs.
no code implementations • 31 Mar 2023 • Rami Botros, Rohit Prabhavalkar, Johan Schalkwyk, Ciprian Chelba, Tara N. Sainath, Françoise Beaufays
Overall, they present a modular, powerful and cheap alternative to the standard encoder output, as well as the N-best hypotheses.
no code implementations • 31 Mar 2023 • Rami Botros, Anmol Gulati, Tara N. Sainath, Krzysztof Choromanski, Ruoming Pang, Trevor Strohman, Weiran Wang, Jiahui Yu
Conformer models maintain a large number of internal states, the vast majority of which are associated with self-attention layers.
no code implementations • 13 Apr 2022 • Shaojin Ding, Weiran Wang, Ding Zhao, Tara N. Sainath, Yanzhang He, Robert David, Rami Botros, Xin Wang, Rina Panigrahy, Qiao Liang, Dongseong Hwang, Ian McGraw, Rohit Prabhavalkar, Trevor Strohman
In this paper, we propose a dynamic cascaded encoder Automatic Speech Recognition (ASR) model, which unifies models for different deployment scenarios.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 15 Sep 2021 • Rami Botros, Tara N. Sainath, Robert David, Emmanuel Guzman, Wei Li, Yanzhang He
Previous works on the Recurrent Neural Network-Transducer (RNN-T) models have shown that, under some conditions, it is possible to simplify its prediction network with little or no loss in recognition accuracy (arXiv:2003. 07705 [eess. AS], [2], arXiv:2012. 06749 [cs. CL]).
no code implementations • 26 Aug 2019 • Ernest Pusateri, Christophe Van Gysel, Rami Botros, Sameer Badaskar, Mirko Hannemann, Youssef Oualil, Ilya Oparin
In this work, we uncover a theoretical connection between two language model interpolation techniques, count merging and Bayesian interpolation.