no code implementations • 28 Jun 2024 • Jonathan Ganz, Christian Marzahl, Jonas Ammeling, Barbara Richter, Chloé Puget, Daniela Denk, Elena A. Demeter, Flaviu A. Tabaran, Gabriel Wasinger, Karoline Lipnik, Marco Tecilla, Matthew J. Valentine, Michael J. Dark, Niklas Abele, Pompei Bolfa, Ramona Erber, Robert Klopfleisch, Sophie Merz, Taryn A. Donovan, Samir Jabari, Christof A. Bertram, Katharina Breininger, Marc Aubreville
Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E.
no code implementations • 21 Mar 2024 • Mathias Öttl, Siyuan Mei, Frauke Wilm, Jana Steenpass, Matthias Rübner, Arndt Hartmann, Matthias Beckmann, Peter Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
However, there is a notable lack of analysis and discussions on the differences between diffusion segmentation and image generation, and thorough evaluations are missing that distinguish the improvements these architectures provide for segmentation in general from their benefit for diffusion segmentation specifically.
no code implementations • 21 Mar 2024 • Mathias Öttl, Frauke Wilm, Jana Steenpass, Jingna Qiu, Matthias Rübner, Arndt Hartmann, Matthias Beckmann, Peter Fasching, Andreas Maier, Ramona Erber, Bernhard Kainz, Katharina Breininger
Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e. g., layout for segmentation.
no code implementations • 11 Nov 2022 • Mathias Öttl, Jana Mönius, Matthias Rübner, Carol I. Geppert, Jingna Qiu, Frauke Wilm, Arndt Hartmann, Matthias W. Beckmann, Peter A. Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology.
no code implementations • 19 Jan 2022 • Mathias Öttl, Jana Mönius, Christian Marzahl, Matthias Rübner, Carol I. Geppert, Arndt Hartmann, Matthias W. Beckmann, Peter Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
When evaluating the approaches on fully manually annotated images, we observe that the autoencoder-based superpixels achieve a 23% increase in boundary F1 score compared to the baseline SLIC superpixels.