no code implementations • 26 Dec 2024 • Joel Z. Leibo, Alexander Sasha Vezhnevets, Manfred Diaz, John P. Agapiou, William A. Cunningham, Peter Sunehag, Julia Haas, Raphael Koster, Edgar A. Duéñez-Guzmán, William S. Isaac, Georgios Piliouras, Stanley M. Bileschi, Iyad Rahwan, Simon Osindero
Humans navigate a multi-scale mosaic of interlocking notions of what is appropriate for different situations.
no code implementations • 23 Apr 2024 • Raphael Koster, Miruna Pîslar, Andrea Tacchetti, Jan Balaguer, Leqi Liu, Romuald Elie, Oliver P. Hauser, Karl Tuyls, Matt Botvinick, Christopher Summerfield
A canonical social dilemma arises when finite resources are allocated to a group of people, who can choose to either reciprocate with interest, or keep the proceeds for themselves.
1 code implementation • NeurIPS 2023 • Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente, Larisa Markeeva, Dylan Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alex Frechette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen, Andrew Zisserman, João Carreira
We propose a novel multimodal video benchmark - the Perception Test - to evaluate the perception and reasoning skills of pre-trained multimodal models (e. g. Flamingo, SeViLA, or GPT-4).
Ranked #1 on
Point Tracking
on Perception Test
1 code implementation • Deep Mind 2022 • Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente, Larisa Markeeva, Dylan Banarse, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Skanda Koppula, Alex Frechette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen, Andrew Zisserman and João Carreira
We propose a novel multimodal benchmark – the Perception Test – that aims to extensively evaluate perception and reasoning skills of multimodal models.
no code implementations • 21 Feb 2022 • Jan Balaguer, Raphael Koster, Christopher Summerfield, Andrea Tacchetti
Our results show that our mechanisms are able to shepherd the participants strategies towards favorable outcomes, indicating a path for modern institutions to effectively and automatically influence the strategies and behaviors of their constituents.
no code implementations • 21 Feb 2022 • Jan Balaguer, Raphael Koster, Ari Weinstein, Lucy Campbell-Gillingham, Christopher Summerfield, Matthew Botvinick, Andrea Tacchetti
Our analysis shows HCMD-zero consistently makes the mechanism policy more and more likely to be preferred by human participants over the course of training, and that it results in a mechanism with an interpretable and intuitive policy.
no code implementations • 27 Jan 2022 • Raphael Koster, Jan Balaguer, Andrea Tacchetti, Ari Weinstein, Tina Zhu, Oliver Hauser, Duncan Williams, Lucy Campbell-Gillingham, Phoebe Thacker, Matthew Botvinick, Christopher Summerfield
Building artificial intelligence (AI) that aligns with human values is an unsolved problem.
1 code implementation • 13 Dec 2021 • Elizabeth Bondi, Raphael Koster, Hannah Sheahan, Martin Chadwick, Yoram Bachrach, Taylan Cemgil, Ulrich Paquet, Krishnamurthy Dvijotham
Using real-world conservation data and a selective prediction system that improves expected accuracy over that of the human or AI system working individually, we show that this messaging has a significant impact on the accuracy of human judgements.
no code implementations • 14 Jul 2021 • Joel Z. Leibo, Edgar Duéñez-Guzmán, Alexander Sasha Vezhnevets, John P. Agapiou, Peter Sunehag, Raphael Koster, Jayd Matyas, Charles Beattie, Igor Mordatch, Thore Graepel
Existing evaluation suites for multi-agent reinforcement learning (MARL) do not assess generalization to novel situations as their primary objective (unlike supervised-learning benchmarks).
Multi-agent Reinforcement Learning
reinforcement-learning
+2
no code implementations • 8 Mar 2021 • Kevin R. McKee, Edward Hughes, Tina O. Zhu, Martin J. Chadwick, Raphael Koster, Antonio Garcia Castaneda, Charlie Beattie, Thore Graepel, Matt Botvinick, Joel Z. Leibo
Collective action demands that individuals efficiently coordinate how much, where, and when to cooperate.
Multi-agent Reinforcement Learning
reinforcement-learning
+2
3 code implementations • NeurIPS 2018 • Edward Hughes, Joel Z. Leibo, Matthew G. Phillips, Karl Tuyls, Edgar A. Duéñez-Guzmán, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin R. McKee, Raphael Koster, Heather Roff, Thore Graepel
Groups of humans are often able to find ways to cooperate with one another in complex, temporally extended social dilemmas.