no code implementations • WMT (EMNLP) 2020 • Benjamin Marie, Raphael Rubino, Atsushi Fujita
This paper presents neural machine translation systems and their combination built for the WMT20 English-Polish and Japanese->English translation tasks.
no code implementations • WMT (EMNLP) 2021 • Raphael Rubino, Atsushi Fujita, Benjamin Marie
This paper presents the NICT Kyoto submission for the WMT’21 Quality Estimation (QE) Critical Error Detection shared task (Task 3).
no code implementations • WMT (EMNLP) 2020 • Raphael Rubino
This paper describes the NICT Kyoto submission for the WMT’20 Quality Estimation (QE) shared task.
no code implementations • 11 Apr 2022 • Zhengdong Yang, Wangjin Zhou, Chenhui Chu, Sheng Li, Raj Dabre, Raphael Rubino, Yi Zhao
This challenge aims to predict MOS scores of synthetic speech on two tracks, the main track and a more challenging sub-track: out-of-domain (OOD).
2 code implementations • ACL 2021 • Benjamin Marie, Atsushi Fujita, Raphael Rubino
MT evaluations in recent papers tend to copy and compare automatic metric scores from previous work to claim the superiority of a method or an algorithm without confirming neither exactly the same training, validating, and testing data have been used nor the metric scores are comparable.
no code implementations • COLING 2020 • Raphael Rubino, Eiichiro Sumita
The proposed method does not rely on annotated data and is complementary to QE methods involving pre-trained sentence encoders and domain adaptation.
no code implementations • ACL 2020 • Benjamin Marie, Raphael Rubino, Atsushi Fujita
In this paper, we show that neural machine translation (NMT) systems trained on large back-translated data overfit some of the characteristics of machine-translated texts.
no code implementations • WS 2020 • Raj Dabre, Raphael Rubino, Atsushi Fujita
We propose and evaluate a novel procedure for training multiple Transformers with tied parameters which compresses multiple models into one enabling the dynamic choice of the number of encoder and decoder layers during decoding.
1 code implementation • 16 Oct 2018 • Ahmad Taie, Raphael Rubino, Josef van Genabith
The advent of representation learning methods enabled large performance gains on various language tasks, alleviating the need for manual feature engineering.
no code implementations • WS 2018 • Daria Pylypenko, Raphael Rubino
This paper presents the Automatic Post-editing (APE) systems submitted by the DFKI-MLT group to the WMT{'}18 APE shared task.
no code implementations • WS 2018 • Rajen Chatterjee, Matteo Negri, Raphael Rubino, Marco Turchi
In the former subtask, characterized by original translations of lower quality, top results achieved impressive improvements, up to -6. 24 TER and +9. 53 BLEU points over the baseline {``}\textit{do-nothing}{''} system.
no code implementations • IJCNLP 2017 • Wei Shi, Frances Yung, Raphael Rubino, Vera Demberg
Implicit discourse relation recognition is an extremely challenging task due to the lack of indicative connectives.
General Classification Implicit Discourse Relation Classification +4
no code implementations • WS 2017 • Ond{\v{r}}ej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shu-Jian Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia Specia, Marco Turchi
no code implementations • EACL 2017 • Hans Uszkoreit, Aleks Gabryszak, ra, Leonhard Hennig, J{\"o}rg Steffen, Renlong Ai, Stephan Busemann, Jon Dehdari, Josef van Genabith, Georg Heigold, Nils Rethmeier, Raphael Rubino, Sven Schmeier, Philippe Thomas, He Wang, Feiyu Xu
Web debates play an important role in enabling broad participation of constituencies in social, political and economic decision-taking.
no code implementations • COLING 2016 • Raphael Rubino, Stefania Degaetano-Ortlieb, Elke Teich, Josef van Genabith
In this paper we investigate the introduction of information theory inspired features to study long term diachronic change on three levels: lexis, part-of-speech and syntax.
no code implementations • WS 2016 • Ond{\v{r}}ej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aur{\'e}lie N{\'e}v{\'e}ol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, Marcos Zampieri
no code implementations • EAMT 2016 • Antonio Toral, Tommi A. Pirinen, Andy Way, Gema Ram{\'\i}rez-S{\'a}nchez, Sergio Ortiz Rojas, Raphael Rubino, Miquel Espl{\`a}, Mikel L. Forcada, Vassilis Papavassiliou, Prokopis Prokopidis, Nikola Ljube{\v{s}}i{\'c}
no code implementations • WS 2014 • Raphael Rubino, Antonio Toral, Victor M. S{\'a}nchez-Cartagena, Jorge Ferr{\'a}ndez-Tordera, Sergio Ortiz-Rojas, Gema Ram{\'\i}rez-S{\'a}nchez, Felipe S{\'a}nchez-Mart{\'\i}nez, Andy Way
no code implementations • LREC 2014 • Raphael Rubino, Antonio Toral, Nikola Ljube{\v{s}}i{\'c}, Gema Ram{\'\i}rez-S{\'a}nchez
This paper presents a novel approach for parallel data generation using machine translation and quality estimation.