Search Results for author: Ratish Puduppully

Found 23 papers, 18 papers with code

RomanLens: Latent Romanization and its role in Multilinguality in LLMs

no code implementations11 Feb 2025 Alan Saji, Jaavid Aktar Husain, Thanmay Jayakumar, Raj Dabre, Anoop Kunchukuttan, Mitesh M. Khapra, Ratish Puduppully

For non-Latin script languages, we investigate the role of romanization - the representation of non-Latin scripts using Latin characters - as a bridge in multilingual processing.

Language Modeling Language Modelling

An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models

1 code implementation8 Jul 2024 Nandini Mundra, Aditya Nanda Kishore, Raj Dabre, Ratish Puduppully, Anoop Kunchukuttan, Mitesh M. Khapra

Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages.

How Good is Zero-Shot MT Evaluation for Low Resource Indian Languages?

1 code implementation6 Jun 2024 Anushka Singh, Ananya B. Sai, Raj Dabre, Ratish Puduppully, Anoop Kunchukuttan, Mitesh M Khapra

While machine translation evaluation has been studied primarily for high-resource languages, there has been a recent interest in evaluation for low-resource languages due to the increasing availability of data and models.

Machine Translation

VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency

1 code implementation13 Nov 2023 Vernon Toh Yan Han, Ratish Puduppully, Nancy F. Chen

Our findings indicate that our approach, which incorporates unit consistency, currently slightly underperforms compared to an approach that does not.

Math Math Word Problem Solving

IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages

1 code implementation25 May 2023 Jay Gala, Pranjal A. Chitale, Raghavan AK, Varun Gumma, Sumanth Doddapaneni, Aswanth Kumar, Janki Nawale, Anupama Sujatha, Ratish Puduppully, Vivek Raghavan, Pratyush Kumar, Mitesh M. Khapra, Raj Dabre, Anoop Kunchukuttan

Prior to this work, there was (i) no parallel training data spanning all 22 languages, (ii) no robust benchmarks covering all these languages and containing content relevant to India, and (iii) no existing translation models which support all the 22 scheduled languages of India.

All Machine Translation +2

CTQScorer: Combining Multiple Features for In-context Example Selection for Machine Translation

1 code implementation23 May 2023 Aswanth Kumar, Ratish Puduppully, Raj Dabre, Anoop Kunchukuttan

We learn a regression model, CTQ Scorer (Contextual Translation Quality), that selects examples based on multiple features in order to maximize the translation quality.

In-Context Learning Machine Translation +2

Decomposed Prompting for Machine Translation Between Related Languages using Large Language Models

1 code implementation22 May 2023 Ratish Puduppully, Anoop Kunchukuttan, Raj Dabre, Ai Ti Aw, Nancy F. Chen

This study investigates machine translation between related languages i. e., languages within the same family that share linguistic characteristics such as word order and lexical similarity.

Machine Translation Translation

A Comprehensive Analysis of Adapter Efficiency

2 code implementations12 May 2023 Nandini Mundra, Sumanth Doddapaneni, Raj Dabre, Anoop Kunchukuttan, Ratish Puduppully, Mitesh M. Khapra

However, adapters have not been sufficiently analyzed to understand if PEFT translates to benefits in training/deployment efficiency and maintainability/extensibility.

Natural Language Understanding parameter-efficient fine-tuning

Multi-Document Summarization with Centroid-Based Pretraining

1 code implementation1 Aug 2022 Ratish Puduppully, Parag Jain, Nancy F. Chen, Mark Steedman

In Multi-Document Summarization (MDS), the input can be modeled as a set of documents, and the output is its summary.

Document Summarization Multi-Document Summarization

GEMv2: Multilingual NLG Benchmarking in a Single Line of Code

1 code implementation22 Jun 2022 Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Hiroaki Hayashi, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza, Shailza Jolly, Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou

This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims.

Benchmarking Text Generation

Data-to-text Generation with Variational Sequential Planning

1 code implementation28 Feb 2022 Ratish Puduppully, Yao Fu, Mirella Lapata

We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input.

Data-to-Text Generation

Data-to-text Generation with Macro Planning

1 code implementation4 Feb 2021 Ratish Puduppully, Mirella Lapata

Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or variants thereof.

Data-to-Text Generation Decoder

Transition-Based Deep Input Linearization

1 code implementation EACL 2017 Ratish Puduppully, Yue Zhang, Manish Shrivastava

Traditional methods for deep NLG adopt pipeline approaches comprising stages such as constructing syntactic input, predicting function words, linearizing the syntactic input and generating the surface forms.

Data-to-Text Generation Machine Translation

Data-to-text Generation with Entity Modeling

2 code implementations ACL 2019 Ratish Puduppully, Li Dong, Mirella Lapata

Recent approaches to data-to-text generation have shown great promise thanks to the use of large-scale datasets and the application of neural network architectures which are trained end-to-end.

Data-to-Text Generation Representation Learning

Data-to-Text Generation with Content Selection and Planning

2 code implementations3 Sep 2018 Ratish Puduppully, Li Dong, Mirella Lapata

Recent advances in data-to-text generation have led to the use of large-scale datasets and neural network models which are trained end-to-end, without explicitly modeling what to say and in what order.

Data-to-Text Generation Descriptive

Cannot find the paper you are looking for? You can Submit a new open access paper.