no code implementations • 9 Nov 2022 • Haichuan Yang, Zhaojun Yang, Li Wan, Biqiao Zhang, Yangyang Shi, Yiteng Huang, Ivaylo Enchev, Limin Tang, Raziel Alvarez, Ming Sun, Xin Lei, Raghuraman Krishnamoorthi, Vikas Chandra
This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting.
no code implementations • 14 Jan 2021 • Jian Li, Raziel Alvarez
Integer quantization of neural networks can be defined as the approximation of the high precision computation of the canonical neural network formulation, using reduced integer precision.
no code implementations • 28 Mar 2020 • Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan, Ruoming Pang, Antoine Bruguier, Shuo-Yiin Chang, Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-Cheng Chiu, David Garcia, Alex Gruenstein, Ke Hu, Minho Jin, Anjuli Kannan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit Prabhavalkar, Golan Pundak, David Rybach, Yuan Shangguan, Yash Sheth, Trevor Strohman, Mirko Visontai, Yonghui Wu, Yu Zhang, Ding Zhao
Thus far, end-to-end (E2E) models have not been shown to outperform state-of-the-art conventional models with respect to both quality, i. e., word error rate (WER), and latency, i. e., the time the hypothesis is finalized after the user stops speaking.
no code implementations • 26 Sep 2019 • Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez, Ian McGraw
While most deployed speech recognition systems today still run on servers, we are in the midst of a transition towards deployments on edge devices.
2 code implementations • 21 Feb 2019 • Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models.
2 code implementations • 15 Nov 2018 • Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-Yiin Chang, Kanishka Rao, Alexander Gruenstein
End-to-end (E2E) models, which directly predict output character sequences given input speech, are good candidates for on-device speech recognition.
no code implementations • 15 Jul 2016 • Raziel Alvarez, Rohit Prabhavalkar, Anton Bakhtin
In this paper we present a simple and computationally efficient quantization scheme that enables us to reduce the resolution of the parameters of a neural network from 32-bit floating point values to 8-bit integer values.
no code implementations • 10 Mar 2016 • Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kanishka Rao, David Rybach, Ouais Alsharif, Hasim Sak, Alexander Gruenstein, Francoise Beaufays, Carolina Parada
We describe a large vocabulary speech recognition system that is accurate, has low latency, and yet has a small enough memory and computational footprint to run faster than real-time on a Nexus 5 Android smartphone.