no code implementations • 29 Jun 2024 • Mirco Ravanelli, Titouan Parcollet, Adel Moumen, Sylvain de Langen, Cem Subakan, Peter Plantinga, Yingzhi Wang, Pooneh Mousavi, Luca Della Libera, Artem Ploujnikov, Francesco Paissan, Davide Borra, Salah Zaiem, Zeyu Zhao, Shucong Zhang, Georgios Karakasidis, Sung-Lin Yeh, Pierre Champion, Aku Rouhe, Rudolf Braun, Florian Mai, Juan Zuluaga-Gomez, Seyed Mahed Mousavi, Andreas Nautsch, Xuechen Liu, Sangeet Sagar, Jarod Duret, Salima Mdhaffar, Gaelle Laperriere, Mickael Rouvier, Renato de Mori, Yannick Esteve
This paper presents SpeechBrain 1. 0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face.
4 code implementations • 8 Jun 2021 • Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, Ju-chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William Aris, Hwidong Na, Yan Gao, Renato de Mori, Yoshua Bengio
SpeechBrain is an open-source and all-in-one speech toolkit.
no code implementations • 1 Feb 2021 • Valentin Pelloin, Nathalie Camelin, Antoine Laurent, Renato de Mori, Antoine Caubrière, Yannick Estève, Sylvain Meignier
In this paper, we propose a novel end-to-end sequence-to-sequence spoken language understanding model using an attention mechanism.
no code implementations • 14 Feb 2020 • Natalia Tomashenko, Christian Raymond, Antoine Caubriere, Renato de Mori, Yannick Esteve
The dialog history is represented in the form of dialog history embedding vectors (so-called h-vectors) and is provided as an additional information to end-to-end SLU models in order to improve the system performance.
no code implementations • 17 Jun 2019 • Titouan Parcollet, Mohamed Morchid, Georges Linarès, Renato de Mori
Deep neural networks (DNNs) and more precisely recurrent neural networks (RNNs) are at the core of modern automatic speech recognition systems, due to their efficiency to process input sequences.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 21 Dec 2018 • Xavier Bost, Marc El Bèze, Renato de Mori
Furthermore, using the theme skeleton of a conversation from which thematic densities are derived, it will be possible to extract components of an automatic conversation report to be used for improving the service performance.
no code implementations • 21 Nov 2018 • Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Renato de Mori
Neural network architectures are at the core of powerful automatic speech recognition systems (ASR).
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
2 code implementations • 6 Nov 2018 • Titouan Parcollet, Mohamed Morchid, Georges Linarès, Renato de Mori
Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
1 code implementation • 20 Jun 2018 • Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Renato De Mori, Yoshua Bengio
Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models.
Ranked #19 on Speech Recognition on TIMIT
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
3 code implementations • ICLR 2019 • Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb Trabelsi, Renato de Mori, Yoshua Bengio
Recurrent neural networks (RNNs) are powerful architectures to model sequential data, due to their capability to learn short and long-term dependencies between the basic elements of a sequence.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 26 May 2017 • Edwin Simonnet, Sahar Ghannay, Nathalie Camelin, Yannick Estève, Renato de Mori
This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +5
no code implementations • 11 Feb 2017 • Mohamed Bouaziz, Mohamed Morchid, Richard Dufour, Georges Linarès, Renato de Mori
Nevertheless, these RNNs process a single input stream in one (LSTM) or two (Bidirectional LSTM) directions.
no code implementations • JEPTALNRECITAL 2016 • Killian Janod, Mohamed Morchid, Richard Dufour, Georges Linar{\`e}s, Renato de Mori
Les repr{\'e}sentations de documents au moyen d{'}approches {\`a} base de r{\'e}seaux de neurones ont montr{\'e} des am{\'e}liorations significatives dans de nombreuses t{\^a}ches du traitement du langage naturel.
no code implementations • JEPTALNRECITAL 2015 • Carole Lailler, Yannick Est{\`e}ve, Renato de Mori, Mohamed Bouall{\`e}gue, Mohamed Morchid
Les travaux pr{\'e}sent{\'e}s portent sur l{'}extraction automatique d{'}unit{\'e}s s{\'e}mantiques et l{'}{\'e}valuation de leur pertinence pour des conversations t{\'e}l{\'e}phoniques.
no code implementations • LREC 2012 • Frederic Bechet, Benjamin Maza, Nicolas Bigouroux, Thierry Bazillon, Marc El-B{\`e}ze, Renato de Mori, Eric Arbillot
The goal of the DECODA project is to reduce the development cost of Speech Analytics systems by reducing the need for manual annotat ion.