no code implementations • 23 May 2024 • Hanwei Zhang, Luo Cheng, Qisong He, Wei Huang, Renjue Li, Ronan Sicre, Xiaowei Huang, Holger Hermanns, Lijun Zhang
As with other ML tasks, classification models are notoriously brittle in the presence of adversarial attacks.
no code implementations • 2 Apr 2024 • Zhiming Chi, Jianan Ma, Pengfei Yang, Cheng-Chao Huang, Renjue Li, Xiaowei Huang, Lijun Zhang
Existing neuron-level methods using limited data lack efficacy in fixing adversaries due to the inherent complexity of adversarial attack mechanisms, while adversarial training, leveraging a large number of adversarial samples to enhance robustness, lacks provability.
1 code implementation • 18 Oct 2023 • Zhengyu Zhao, Hanwei Zhang, Renjue Li, Ronan Sicre, Laurent Amsaleg, Michael Backes, Qi Li, Chao Shen
Transferable adversarial examples raise critical security concerns in real-world, black-box attack scenarios.
no code implementations • 23 Nov 2022 • Renjue Li, Tianhang Qin, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Lijun Zhang
The safety properties proved in the resulting surrogate model apply to the original ADS with a probabilistic guarantee.
1 code implementation • 17 Nov 2022 • Zhengyu Zhao, Hanwei Zhang, Renjue Li, Ronan Sicre, Laurent Amsaleg, Michael Backes
In this work, we design good practices to address these limitations, and we present the first comprehensive evaluation of transfer attacks, covering 23 representative attacks against 9 defenses on ImageNet.
no code implementations • 5 Jun 2021 • Renjue Li, Hanwei Zhang, Pengfei Yang, Cheng-Chao Huang, Aimin Zhou, Bai Xue, Lijun Zhang
In this paper, we propose a framework of filter-based ensemble of deep neuralnetworks (DNNs) to defend against adversarial attacks.
1 code implementation • 25 Jan 2021 • Renjue Li, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Bai Xue, Lijun Zhang
It is shown that DeepPAC outperforms the state-of-the-art statistical method PROVERO, and it achieves more practical robustness analysis than the formal verification tool ERAN.
1 code implementation • 15 Oct 2020 • Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, Lijun Zhang
The core idea is to make use of the obtained constraints of the abstraction to infer new bounds for the neurons.