no code implementations • 25 Oct 2021 • Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
no code implementations • 19 Jan 2021 • Mikhail M. Meskhi, Adriano Rivolli, Rafael G. Mantovani, Ricardo Vilalta
A proper form of data characterization can guide the process of learning-algorithm selection and model-performance estimation.
1 code implementation • 12 Oct 2020 • Noble Kennamer, Emille E. O. Ishida, Santiago Gonzalez-Gaitan, Rafael S. de Souza, Alexander Ihler, Kara Ponder, Ricardo Vilalta, Anais Moller, David O. Jones, Mi Dai, Alberto Krone-Martins, Bruno Quint, Sreevarsha Sreejith, Alex I. Malz, Lluis Galbany
The Recommendation System for Spectroscopic follow-up (RESSPECT) project aims to enable the construction of optimized training samples for the Rubin Observatory Legacy Survey of Space and Time (LSST), taking into account a realistic description of the astronomical data environment.
no code implementations • 5 Nov 2019 • Brian Nord, Andrew J. Connolly, Jamie Kinney, Jeremy Kubica, Gautaum Narayan, Joshua E. G. Peek, Chad Schafer, Erik J. Tollerud, Camille Avestruz, G. Jogesh Babu, Simon Birrer, Douglas Burke, João Caldeira, Douglas A. Caldwell, Joleen K. Carlberg, Yen-Chi Chen, Chuanfei Dong, Eric D. Feigelson, V. Zach Golkhou, Vinay Kashyap, T. S. Li, Thomas Loredo, Luisa Lucie-Smith, Kaisey S. Mandel, J. R. Martínez-Galarza, Adam A. Miller, Priyamvada Natarajan, Michelle Ntampaka, Andy Ptak, David Rapetti, Lior Shamir, Aneta Siemiginowska, Brigitta M. Sipőcz, Arfon M. Smith, Nhan Tran, Ricardo Vilalta, Lucianne M. Walkowicz, John ZuHone
The field of astronomy has arrived at a turning point in terms of size and complexity of both datasets and scientific collaboration.
no code implementations • 20 Dec 2018 • Ricardo Vilalta
In contrast, a new generation of techniques is emerging where predictive models can take advantage of previous experience to leverage information from similar tasks.
no code implementations • 20 Dec 2018 • Ricardo Vilalta, Kinjal Dhar Gupta, Dainis Boumber, Mikhail M. Meskhi
The ability to build a model on a source task and subsequently adapt such model on a new target task is a pervasive need in many astronomical applications.
no code implementations • 16 Aug 2018 • Behrang Mehrparvar, Ricardo Vilalta
We introduce a search framework to correctly align high-level representations when training deep networks; such framework leads to the notion of conceptual --as opposed to representational-- domain adaptation.