2 code implementations • 28 Jan 2025 • Anurag Vaidya, Andrew Zhang, Guillaume Jaume, Andrew H. Song, Tong Ding, Sophia J. Wagner, Ming Y. Lu, Paul Doucet, Harry Robertson, Cristina Almagro-Perez, Richard J. Chen, Dina ElHarouni, Georges Ayoub, Connor Bossi, Keith L. Ligon, Georg Gerber, Long Phi Le, Faisal Mahmood
Foundation models are reshaping computational pathology by enabling transfer learning, where models pre-trained on vast datasets can be adapted for downstream diagnostic, prognostic, and therapeutic response tasks.
2 code implementations • 29 Nov 2024 • Tong Ding, Sophia J. Wagner, Andrew H. Song, Richard J. Chen, Ming Y. Lu, Andrew Zhang, Anurag J. Vaidya, Guillaume Jaume, Muhammad Shaban, Ahrong Kim, Drew F. K. Williamson, Bowen Chen, Cristina Almagro-Perez, Paul Doucet, Sharifa Sahai, Chengkuan Chen, Daisuke Komura, Akihiro Kawabe, Shumpei Ishikawa, Georg Gerber, Tingying Peng, Long Phi Le, Faisal Mahmood
The field of computational pathology has been transformed with recent advances in foundation models that encode histopathology region-of-interests (ROIs) into versatile and transferable feature representations via self-supervised learning (SSL).
1 code implementation • 5 Aug 2024 • Guillaume Jaume, Anurag Vaidya, Andrew Zhang, Andrew H. Song, Richard J. Chen, Sharifa Sahai, Dandan Mo, Emilio Madrigal, Long Phi Le, Faisal Mahmood
Existing approaches for slide representation learning extend the principles of SSL from small images (e. g., 224 x 224 patches) to entire slides, usually by aligning two different augmentations (or views) of the slide.
1 code implementation • 28 Jun 2024 • Andrew H. Song, Richard J. Chen, Guillaume Jaume, Anurag J. Vaidya, Alexander S. Baras, Faisal Mahmood
Multimodal survival methods combining gigapixel histology whole-slide images (WSIs) and transcriptomic profiles are particularly promising for patient prognostication and stratification.
1 code implementation • 23 Jun 2024 • Guillaume Jaume, Paul Doucet, Andrew H. Song, Ming Y. Lu, Cristina Almagro-Pérez, Sophia J. Wagner, Anurag J. Vaidya, Richard J. Chen, Drew F. K. Williamson, Ahrong Kim, Faisal Mahmood
Spatial transcriptomics enables interrogating the molecular composition of tissue with ever-increasing resolution and sensitivity.
1 code implementation • CVPR 2024 • Guillaume Jaume, Lukas Oldenburg, Anurag Vaidya, Richard J. Chen, Drew F. K. Williamson, Thomas Peeters, Andrew H. Song, Faisal Mahmood
Across three independent test datasets consisting of 1, 265 breast WSIs, 1, 946 lung WSIs, and 4, 584 liver WSIs, Tangle shows significantly better few-shot performance compared to supervised and SSL baselines.
1 code implementation • CVPR 2024 • Andrew H. Song, Richard J. Chen, Tong Ding, Drew F. K. Williamson, Guillaume Jaume, Faisal Mahmood
Representation learning of pathology whole-slide images (WSIs) has been has primarily relied on weak supervision with Multiple Instance Learning (MIL).
no code implementations • 13 Dec 2023 • Ming Y. Lu, Bowen Chen, Drew F. K. Williamson, Richard J. Chen, Kenji Ikamura, Georg Gerber, Ivy Liang, Long Phi Le, Tong Ding, Anil V Parwani, Faisal Mahmood
We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4.
1 code implementation • 29 Aug 2023 • Richard J. Chen, Tong Ding, Ming Y. Lu, Drew F. K. Williamson, Guillaume Jaume, Bowen Chen, Andrew Zhang, Daniel Shao, Andrew H. Song, Muhammad Shaban, Mane Williams, Anurag Vaidya, Sharifa Sahai, Lukas Oldenburg, Luca L. Weishaupt, Judy J. Wang, Walt Williams, Long Phi Le, Georg Gerber, Faisal Mahmood
Tissue phenotyping is a fundamental computational pathology (CPath) task in learning objective characterizations of histopathologic biomarkers in anatomic pathology.
no code implementations • 24 Jul 2023 • Ming Y. Lu, Bowen Chen, Drew F. K. Williamson, Richard J. Chen, Ivy Liang, Tong Ding, Guillaume Jaume, Igor Odintsov, Andrew Zhang, Long Phi Le, Georg Gerber, Anil V Parwani, Faisal Mahmood
The accelerated adoption of digital pathology and advances in deep learning have enabled the development of powerful models for various pathology tasks across a diverse array of diseases and patient cohorts.
1 code implementation • CVPR 2023 • Ming Y. Lu, Bowen Chen, Andrew Zhang, Drew F. K. Williamson, Richard J. Chen, Tong Ding, Long Phi Le, Yung-Sung Chuang, Faisal Mahmood
In this paper we present MI-Zero, a simple and intuitive framework for unleashing the zero-shot transfer capabilities of contrastively aligned image and text models on gigapixel histopathology whole slide images, enabling multiple downstream diagnostic tasks to be carried out by pretrained encoders without requiring any additional labels.
1 code implementation • 17 Jun 2022 • Iain Carmichael, Andrew H. Song, Richard J. Chen, Drew F. K. Williamson, Tiffany Y. Chen, Faisal Mahmood
Supervised learning tasks such as cancer survival prediction from gigapixel whole slide images (WSIs) are a critical challenge in computational pathology that requires modeling complex features of the tumor microenvironment.
2 code implementations • CVPR 2022 • Richard J. Chen, Chengkuan Chen, Yicong Li, Tiffany Y. Chen, Andrew D. Trister, Rahul G. Krishnan, Faisal Mahmood
Vision Transformers (ViTs) and their multi-scale and hierarchical variations have been successful at capturing image representations but their use has been generally studied for low-resolution images (e. g. - 256x256, 384384).
1 code implementation • 1 Mar 2022 • Richard J. Chen, Rahul G. Krishnan
Tissue phenotyping is a fundamental task in learning objective characterizations of histopathologic biomarkers within the tumor-immune microenvironment in cancer pathology.
no code implementations • 1 Oct 2021 • Richard J. Chen, Tiffany Y. Chen, Jana Lipkova, Judy J. Wang, Drew F. K. Williamson, Ming Y. Lu, Sharifa Sahai, Faisal Mahmood
In the current development and deployment of many artificial intelligence (AI) systems in healthcare, algorithm fairness is a challenging problem in delivering equitable care.
1 code implementation • 4 Aug 2021 • Richard J. Chen, Ming Y. Lu, Drew F. K. Williamson, Tiffany Y. Chen, Jana Lipkova, Muhammad Shaban, Maha Shady, Mane Williams, Bumjin Joo, Zahra Noor, Faisal Mahmood
To validate that these model explanations are prognostic, we further analyzed high attention morphological regions in WSIs, which indicates that tumor-infiltrating lymphocyte presence corroborates with favorable cancer prognosis on 9 out of 14 cancer types studied.
1 code implementation • 27 Jul 2021 • Richard J. Chen, Ming Y. Lu, Muhammad Shaban, Chengkuan Chen, Tiffany Y. Chen, Drew F. K. Williamson, Faisal Mahmood
Cancer prognostication is a challenging task in computational pathology that requires context-aware representations of histology features to adequately infer patient survival.
1 code implementation • ICCV 2021 • Richard J. Chen, Ming Y. Lu, Wei-Hung Weng, Tiffany Y. Chen, Drew F.K. Williamson, Trevor Manz, Maha Shady, Faisal Mahmood
Survival outcome prediction is a challenging weakly-supervised and ordinal regression task in computational pathology that involves modeling complex interactions within the tumor microenvironment in gigapixel whole slide images (WSIs).
1 code implementation • 21 Sep 2020 • Ming Y. Lu, Dehan Kong, Jana Lipkova, Richard J. Chen, Rajendra Singh, Drew F. K. Williamson, Tiffany Y. Chen, Faisal Mahmood
In this paper, we introduce privacy-preserving federated learning for gigapixel whole slide images in computational pathology using weakly-supervised attention multiple instance learning and differential privacy.
2 code implementations • 29 Aug 2020 • Kagan Incetan, Ibrahim Omer Celik, Abdulhamid Obeid, Guliz Irem Gokceler, Kutsev Bengisu Ozyoruk, Yasin Almalioglu, Richard J. Chen, Faisal Mahmood, Hunter Gilbert, Nicholas J. Durr, Mehmet Turan
Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions.
2 code implementations • 20 Apr 2020 • Ming Y. Lu, Drew F. K. Williamson, Tiffany Y. Chen, Richard J. Chen, Matteo Barbieri, Faisal Mahmood
CLAM is a general-purpose and adaptable method that can be used for a variety of different computational pathology tasks in both clinical and research settings.
3 code implementations • 13 Feb 2020 • Yasin Almalioglu, Kutsev Bengisu Ozyoruk, Abdulkadir Gokce, Kagan Incetan, Guliz Irem Gokceler, Muhammed Ali Simsek, Kivanc Ararat, Richard J. Chen, Nicholas J. Durr, Faisal Mahmood, Mehmet Turan
Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics.
1 code implementation • 18 Dec 2019 • Richard J. Chen, Ming Y. Lu, Jingwen Wang, Drew F. K. Williamson, Scott J. Rodig, Neal I. Lindeman, Faisal Mahmood
Cancer diagnosis, prognosis, and therapeutic response predictions are based on morphological information from histology slides and molecular profiles from genomic data.
no code implementations • 29 Oct 2019 • Jingwen Wang, Richard J. Chen, Ming Y. Lu, Alexander Baras, Faisal Mahmood
In prostate cancer, the Gleason score is a grading system used to measure the aggressiveness of prostate cancer from the spatial organization of cells and the distribution of glands.
no code implementations • 23 Oct 2019 • Ming Y. Lu, Richard J. Chen, Jingwen Wang, Debora Dillon, Faisal Mahmood
Convolutional neural networks can be trained to perform histology slide classification using weak annotations with multiple instance learning (MIL).
no code implementations • 29 Jun 2019 • Richard J. Chen, Taylor L. Bobrow, Thomas Athey, Faisal Mahmood, Nicholas J. Durr
Medical endoscopy remains a challenging application for simultaneous localization and mapping (SLAM) due to the sparsity of image features and size constraints that prevent direct depth-sensing.