Search Results for author: Rickmer Braren

Found 25 papers, 11 papers with code

Real-World Federated Learning in Radiology: Hurdles to overcome and Benefits to gain

no code implementations15 May 2024 Markus R. Bujotzek, Ünal Akünal, Stefan Denner, Peter Neher, Maximilian Zenk, Eric Frodl, Astha Jaiswal, Moon Kim, Nicolai R. Krekiehn, Manuel Nickel, Richard Ruppel, Marcus Both, Felix Döllinger, Marcel Opitz, Thorsten Persigehl, Jens Kleesiek, Tobias Penzkofer, Klaus Maier-Hein, Rickmer Braren, Andreas Bucher

Our results underscore the value of efforts needed to translate FL into real-world applications by demonstrating advantageous performance over alternatives, and emphasize the importance of strategic organization, robust management of distributed data and infrastructure in real-world settings.

Federated Learning

Reconciling AI Performance and Data Reconstruction Resilience for Medical Imaging

no code implementations5 Dec 2023 Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard Feiner, Johannes Brandt, Rickmer Braren, Daniel Rueckert, Georgios Kaissis

Although a lower budget decreases the risk of information leakage, it typically also reduces the performance of such models.

3D Arterial Segmentation via Single 2D Projections and Depth Supervision in Contrast-Enhanced CT Images

1 code implementation15 Sep 2023 Alina F. Dima, Veronika A. Zimmer, Martin J. Menten, Hongwei Bran Li, Markus Graf, Tristan Lemke, Philipp Raffler, Robert Graf, Jan S. Kirschke, Rickmer Braren, Daniel Rueckert

In this work, we propose a novel method to segment the 3D peripancreatic arteries solely from one annotated 2D projection per training image with depth supervision.


Constructing Population-Specific Atlases from Whole Body MRI: Application to the UKBB

no code implementations28 Aug 2023 Sophie Starck, Vasiliki Sideri-Lampretsa, Jessica J. M. Ritter, Veronika A. Zimmer, Rickmer Braren, Tamara T. Mueller, Daniel Rueckert

We demonstrate different applications of these atlases, using the differences between subjects with medical conditions such as diabetes and cardiovascular diseases and healthy subjects from the atlas space.

Atlas-Based Interpretable Age Prediction In Whole-Body MR Images

no code implementations14 Jul 2023 Sophie Starck, Yadunandan Vivekanand Kini, Jessica Johanna Maria Ritter, Rickmer Braren, Daniel Rueckert, Tamara Mueller

We utilise the Grad-CAM interpretability method to determine the body areas most predictive of a person's age.

Body Fat Estimation from Surface Meshes using Graph Neural Networks

no code implementations13 Jul 2023 Tamara T. Mueller, Siyu Zhou, Sophie Starck, Friederike Jungmann, Alexander Ziller, Orhun Aksoy, Danylo Movchan, Rickmer Braren, Georgios Kaissis, Daniel Rueckert

Body fat volume and distribution can be a strong indication for a person's overall health and the risk for developing diseases like type 2 diabetes and cardiovascular diseases.

Interpretable 2D Vision Models for 3D Medical Images

1 code implementation13 Jul 2023 Alexander Ziller, Ayhan Can Erdur, Marwa Trigui, Alp Güvenir, Tamara T. Mueller, Philip Müller, Friederike Jungmann, Johannes Brandt, Jan Peeken, Rickmer Braren, Daniel Rueckert, Georgios Kaissis

Training Artificial Intelligence (AI) models on 3D images presents unique challenges compared to the 2D case: Firstly, the demand for computational resources is significantly higher, and secondly, the availability of large datasets for pre-training is often limited, impeding training success.

Exploiting segmentation labels and representation learning to forecast therapy response of PDAC patients

no code implementations8 Nov 2022 Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel Rueckert, Rickmer Braren, Georgios Kaissis

The prediction of pancreatic ductal adenocarcinoma therapy response is a clinically challenging and important task in this high-mortality tumour entity.

Representation Learning

U-GAT: Multimodal Graph Attention Network for COVID-19 Outcome Prediction

no code implementations29 Jul 2021 Matthias Keicher, Hendrik Burwinkel, David Bani-Harouni, Magdalini Paschali, Tobias Czempiel, Egon Burian, Marcus R. Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler

Specifically, we introduce a multimodal similarity metric to build a population graph for clustering patients and an image-based end-to-end Graph Attention Network to process this graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation and mortality.

Clustering Decision Making +1

Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation

no code implementations9 Jul 2021 Alexander Ziller, Dmitrii Usynin, Moritz Knolle, Kritika Prakash, Andrew Trask, Rickmer Braren, Marcus Makowski, Daniel Rueckert, Georgios Kaissis

Reconciling large-scale ML with the closed-form reasoning required for the principled analysis of individual privacy loss requires the introduction of new tools for automatic sensitivity analysis and for tracking an individual's data and their features through the flow of computation.

BIG-bench Machine Learning

Differentially private federated deep learning for multi-site medical image segmentation

1 code implementation6 Jul 2021 Alexander Ziller, Dmitrii Usynin, Nicolas Remerscheid, Moritz Knolle, Marcus Makowski, Rickmer Braren, Daniel Rueckert, Georgios Kaissis

The application of PTs to FL in medical imaging and the trade-offs between privacy guarantees and model utility, the ramifications on training performance and the susceptibility of the final models to attacks have not yet been conclusively investigated.

Federated Learning Image Segmentation +4

Longitudinal Quantitative Assessment of COVID-19 Infection Progression from Chest CTs

1 code implementation12 Mar 2021 Seong Tae Kim, Leili Goli, Magdalini Paschali, Ashkan Khakzar, Matthias Keicher, Tobias Czempiel, Egon Burian, Rickmer Braren, Nassir Navab, Thomas Wendler

Chest computed tomography (CT) has played an essential diagnostic role in assessing patients with COVID-19 by showing disease-specific image features such as ground-glass opacity and consolidation.

Computed Tomography (CT) COVID-19 Image Segmentation +2

The Liver Tumor Segmentation Benchmark (LiTS)

6 code implementations13 Jan 2019 Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.

Benchmarking Computed Tomography (CT) +3

Differential Diagnosis for Pancreatic Cysts in CT Scans Using Densely-Connected Convolutional Networks

no code implementations4 Jun 2018 Hongwei Li, Kanru Lin, Maximilian Reichert, Lina Xu, Rickmer Braren, Deliang Fu, Roland Schmid, Ji Li, Bjoern Menze, Kuangyu Shi

The lethal nature of pancreatic ductal adenocarcinoma (PDAC) calls for early differential diagnosis of pancreatic cysts, which are identified in up to 16% of normal subjects, and some of which may develop into PDAC.

Cannot find the paper you are looking for? You can Submit a new open access paper.