1 code implementation • 3 Feb 2023 • Soroosh Tayebi Arasteh, Alexander Ziller, Christiane Kuhl, Marcus Makowski, Sven Nebelung, Rickmer Braren, Daniel Rueckert, Daniel Truhn, Georgios Kaissis
In this work, we evaluated the effect of privacy-preserving training of AI models for chest radiograph diagnosis regarding accuracy and fairness compared to non-private training.
no code implementations • 29 Dec 2022 • Vikash Gupta, Barbaros Selnur Erdal, Carolina Ramirez, Ralf Floca, Laurence Jackson, Brad Genereaux, Sidney Bryson, Christopher P Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, M. Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D. White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib
To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation.
no code implementations • 8 Nov 2022 • Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel Rueckert, Rickmer Braren, Georgios Kaissis
The prediction of pancreatic ductal adenocarcinoma therapy response is a clinically challenging and important task in this high-mortality tumour entity.
no code implementations • 21 Mar 2022 • Tobias Czempiel, Coco Rogers, Matthias Keicher, Magdalini Paschali, Rickmer Braren, Egon Burian, Marcus Makowski, Nassir Navab, Thomas Wendler, Seong Tae Kim
For this purpose, longitudinal self-supervision schemes are explored on clinical longitudinal COVID-19 CT scans.
no code implementations • 3 Oct 2021 • Michelle Xiao-Lin Foo, Seong Tae Kim, Magdalini Paschali, Leili Goli, Egon Burian, Marcus Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler
Existing automatic and interactive segmentation models for medical images only use data from a single time point (static).
no code implementations • 29 Jul 2021 • Matthias Keicher, Hendrik Burwinkel, David Bani-Harouni, Magdalini Paschali, Tobias Czempiel, Egon Burian, Marcus R. Makowski, Rickmer Braren, Nassir Navab, Thomas Wendler
Specifically, we introduce a multimodal similarity metric to build a population graph for clustering patients and an image-based end-to-end Graph Attention Network to process this graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation and mortality.
no code implementations • 9 Jul 2021 • Alexander Ziller, Dmitrii Usynin, Moritz Knolle, Kritika Prakash, Andrew Trask, Rickmer Braren, Marcus Makowski, Daniel Rueckert, Georgios Kaissis
Reconciling large-scale ML with the closed-form reasoning required for the principled analysis of individual privacy loss requires the introduction of new tools for automatic sensitivity analysis and for tracking an individual's data and their features through the flow of computation.
no code implementations • 9 Jul 2021 • Moritz Knolle, Alexander Ziller, Dmitrii Usynin, Rickmer Braren, Marcus R. Makowski, Daniel Rueckert, Georgios Kaissis
We show that differentially private stochastic gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models.
1 code implementation • 6 Jul 2021 • Alexander Ziller, Dmitrii Usynin, Nicolas Remerscheid, Moritz Knolle, Marcus Makowski, Rickmer Braren, Daniel Rueckert, Georgios Kaissis
The application of PTs to FL in medical imaging and the trade-offs between privacy guarantees and model utility, the ramifications on training performance and the susceptibility of the final models to attacks have not yet been conclusively investigated.
1 code implementation • 12 Mar 2021 • Seong Tae Kim, Leili Goli, Magdalini Paschali, Ashkan Khakzar, Matthias Keicher, Tobias Czempiel, Egon Burian, Rickmer Braren, Nassir Navab, Thomas Wendler
Chest computed tomography (CT) has played an essential diagnostic role in assessing patients with COVID-19 by showing disease-specific image features such as ground-glass opacity and consolidation.
1 code implementation • 10 Mar 2021 • Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T. Löffler, Amirhossein Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, Thomas Baum, Benedikt Wiestler, Bjoern Menze, Rickmer Braren, Claus Zimmer, Jan S. Kirschke
With the advent of deep learning algorithms, fully automated radiological image analysis is within reach.
no code implementations • 10 Dec 2020 • Alexander Ziller, Jonathan Passerat-Palmbach, Théo Ryffel, Dmitrii Usynin, Andrew Trask, Ionésio Da Lima Costa Junior, Jason Mancuso, Marcus Makowski, Daniel Rueckert, Rickmer Braren, Georgios Kaissis
The utilisation of artificial intelligence in medicine and healthcare has led to successful clinical applications in several domains.
1 code implementation • 2 Sep 2020 • Moritz Knolle, Georgios Kaissis, Friederike Jungmann, Sebastian Ziegelmayer, Daniel Sasse, Marcus Makowski, Daniel Rueckert, Rickmer Braren
For artificial intelligence-based image analysis methods to reach clinical applicability, the development of high-performance algorithms is crucial.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.
no code implementations • 4 Jun 2018 • Hongwei Li, Kanru Lin, Maximilian Reichert, Lina Xu, Rickmer Braren, Deliang Fu, Roland Schmid, Ji Li, Bjoern Menze, Kuangyu Shi
The lethal nature of pancreatic ductal adenocarcinoma (PDAC) calls for early differential diagnosis of pancreatic cysts, which are identified in up to 16% of normal subjects, and some of which may develop into PDAC.
1 code implementation • 20 Feb 2017 • Patrick Ferdinand Christ, Florian Ettlinger, Georgios Kaissis, Sebastian Schlecht, Freba Ahmaddy, Felix Grün, Alexander Valentinitsch, Seyed-Ahmad Ahmadi, Rickmer Braren, Bjoern Menze
A 3D neural network (SurvivalNet) then predicts the HCC lesions' malignancy from the HCC tumor segmentation.
4 code implementations • 20 Feb 2017 • Patrick Ferdinand Christ, Florian Ettlinger, Felix Grün, Mohamed Ezzeldin A. Elshaera, Jana Lipkova, Sebastian Schlecht, Freba Ahmaddy, Sunil Tatavarty, Marc Bickel, Patrick Bilic, Markus Rempfler, Felix Hofmann, Melvin D Anastasi, Seyed-Ahmad Ahmadi, Georgios Kaissis, Julian Holch, Wieland Sommer, Rickmer Braren, Volker Heinemann, Bjoern Menze
In the first step, we train a FCN to segment the liver as ROI input for a second FCN.
Automatic Liver And Tumor Segmentation
Lesion Segmentation
+1