1 code implementation • 13 Mar 2025 • Han Liu, Riqiang Gao, Sasa Grbic
However, due to the lack of early and disease-specific symptoms, most patients with PDAC are diagnosed at an advanced disease stage.
no code implementations • 5 Feb 2025 • Simon Arberet, Florin C. Ghesu, Riqiang Gao, Martin Kraus, Jonathan Sackett, Esa Kuusela, Ali Kamen
We developed a 3D network which we trained in a supervised way using a combination of L1 and L2 losses, and RT plans generated by Eclipse and from the REQUITE dataset, taking the RT dose map as input and the fluence maps computed from the corresponding RT plans as target.
1 code implementation • 21 Jan 2025 • Riqiang Gao, Mamadou Diallo, Han Liu, Anthony Magliari, Jonathan Sackett, Wilko Verbakel, Sandra Meyers, Masoud Zarepisheh, Rafe McBeth, Simon Arberet, Martin Kraus, Florin C. Ghesu, Ali Kamen
Radiotherapy (RT) planning is complex, subjective, and time-intensive.
no code implementations • 3 Jun 2024 • Riqiang Gao, Florin C. Ghesu, Simon Arberet, Shahab Basiri, Esa Kuusela, Martin Kraus, Dorin Comaniciu, Ali Kamen
In contemporary radiotherapy planning (RTP), a key module leaf sequencing is predominantly addressed by optimization-based approaches.
Deep Reinforcement Learning
Multi-agent Reinforcement Learning
+1
no code implementations • 16 May 2024 • Thomas Z. Li, Kaiwen Xu, Aravind Krishnan, Riqiang Gao, Michael N. Kammer, Sanja Antic, David Xiao, Michael Knight, Yency Martinez, Rafael Paez, Robert J. Lentz, Stephen Deppen, Eric L. Grogan, Thomas A. Lasko, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman
This study retrospectively evaluated promising predictive models for lung cancer prediction in three clinical settings: lung cancer screening with low-dose computed tomography, incidentally detected pulmonary nodules, and nodules deemed suspicious enough to warrant a biopsy.
1 code implementation • 17 Sep 2023 • Xin Yu, Qi Yang, Yucheng Tang, Riqiang Gao, Shunxing Bao, Leon Y. Cai, Ho Hin Lee, Yuankai Huo, Ann Zenobia Moore, Luigi Ferrucci, Bennett A. Landman
We further evaluate our method's capability to harmonize longitudinal positional variation on 1033 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset, which contains longitudinal single abdominal slices, and confirmed that our method can harmonize the slice positional variance in terms of visceral fat area.
no code implementations • 27 Apr 2023 • Han Liu, Zhoubing Xu, Riqiang Gao, Hao Li, Jianing Wang, Guillaume Chabin, Ipek Oguz, Sasa Grbic
We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels.
1 code implementation • 6 Apr 2023 • Thomas Z. Li, John M. Still, Kaiwen Xu, Ho Hin Lee, Leon Y. Cai, Aravind R. Krishnan, Riqiang Gao, Mirza S. Khan, Sanja Antic, Michael Kammer, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman, Thomas A. Lasko
In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification.
no code implementations • CVPR 2023 • Riqiang Gao, Bin Lou, Zhoubing Xu, Dorin Comaniciu, Ali Kamen
Deep learning has been utilized in knowledge-based radiotherapy planning in which a system trained with a set of clinically approved plans is employed to infer a three-dimensional dose map for a given new patient.
no code implementations • 28 Sep 2022 • Xin Yu, Yucheng Tang, Qi Yang, Ho Hin Lee, Riqiang Gao, Shunxing Bao, Ann Zenobia Moore, Luigi Ferrucci, Bennett A. Landman
Metabolic health is increasingly implicated as a risk factor across conditions from cardiology to neurology, and efficiency assessment of body composition is critical to quantitatively characterizing these relationships.
1 code implementation • 28 Sep 2022 • Xin Yu, Qi Yang, Yucheng Tang, Riqiang Gao, Shunxing Bao, LeonY. Cai, Ho Hin Lee, Yuankai Huo, Ann Zenobia Moore, Luigi Ferrucci, Bennett A. Landman
External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area.
1 code implementation • 28 Sep 2022 • Xin Yu, Qi Yang, Yinchi Zhou, Leon Y. Cai, Riqiang Gao, Ho Hin Lee, Thomas Li, Shunxing Bao, Zhoubing Xu, Thomas A. Lasko, Richard G. Abramson, Zizhao Zhang, Yuankai Huo, Bennett A. Landman, Yucheng Tang
Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis.
1 code implementation • 4 Sep 2022 • Thomas Z. Li, Kaiwen Xu, Riqiang Gao, Yucheng Tang, Thomas A. Lasko, Fabien Maldonado, Kim Sandler, Bennett A. Landman
In cross-validation on screening chest CTs from the NLST, our methods (0. 785 and 0. 786 AUC respectively) significantly outperform a cross-sectional approach (0. 734 AUC) and match the discriminative performance of the leading longitudinal medical imaging algorithm (0. 779 AUC) on benign versus malignant classification.
1 code implementation • 13 Jul 2022 • Kaiwen Xu, Thomas Li, Mirza S. Khan, Riqiang Gao, Sanja L. Antic, Yuankai Huo, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman
We evaluate the validity of the proposed method in automatic BC assessment using lung screening CT with limited FOV.
no code implementations • 17 Jun 2022 • Riqiang Gao, Thomas Li, Yucheng Tang, Zhoubing Xu, Michael Kammer, Sanja L. Antic, Kim Sandler, Fabien Moldonado, Thomas A. Lasko, Bennett Landman
We believe that this study has merits to guide readers to choose calibration models and understand gaps between general computer vision and medical imaging domains.
no code implementations • 12 May 2022 • Ho Hin Lee, Yucheng Tang, Riqiang Gao, Qi Yang, Xin Yu, Shunxing Bao, James G. Terry, J. Jeffrey Carr, Yuankai Huo, Bennett A. Landman
In this paper, we propose a novel unsupervised approach that leverages pairwise contrast-enhanced CT (CECT) context to compute non-contrast segmentation without ground-truth label.
no code implementations • 4 Mar 2022 • Xin Yu, Yucheng Tang, Yinchi Zhou, Riqiang Gao, Qi Yang, Ho Hin Lee, Thomas Li, Shunxing Bao, Yuankai Huo, Zhoubing Xu, Thomas A. Lasko, Richard G. Abramson, Bennett A. Landman
Efficiently quantifying renal structures can provide distinct spatial context and facilitate biomarker discovery for kidney morphology.
no code implementations • 29 Sep 2021 • Riqiang Gao, Zhoubing Xu, Guillaume Chabin, Awais Mansoor, Florin-Cristian Ghesu, Bogdan Georgescu, Bennett A. Landman, Sasa Grbic
A Bad-GAN generates pseudo anomalies at the low-density area of inlier distribution, and thus the inlier/outlier distinction can be approximated.
no code implementations • MICCAI Workshop COMPAY 2021 • Shunxing Bao, Yucheng Tang, Ho Hin Lee, Riqiang Gao, Sophie Chiron, Ilwoo Lyu, Lori A. Coburn, Keith T. Wilson, Joseph T. Roland, Bennett A. Landman, Yuankai Huo
Our contribution is three-fold: (1) a single deep network framework is proposed to tackle missing stain in MxIF; (2) the proposed 'N-to-N' strategy reduces theoretical four years of computational time to 20 hours when covering all possible missing stains scenarios, with up to five missing stains (e. g., '(N-1)-to-1', '(N-2)-to-2'); and (3) this work is the first comprehensive experimental study of investigating cross-stain synthesis in MxIF.
1 code implementation • 27 Jul 2021 • Riqiang Gao, Mirza S. Khan, Yucheng Tang, Kaiwen Xu, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman
Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning.
no code implementations • 25 Jul 2021 • Riqiang Gao, Yucheng Tang, Kaiwen Xu, Ho Hin Lee, Steve Deppen, Kim Sandler, Pierre Massion, Thomas A. Lasko, Yuankai Huo, Bennett A. Landman
To our knowledge, it is the first generative adversarial model that addresses multi-modal missing imputation by modeling the joint distribution of image and non-image data.
no code implementations • 5 Dec 2020 • Kaiwen Xu, Riqiang Gao, Mirza S. Khan, Shunxing Bao, Yucheng Tang, Steve A. Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Mattias P. Heinrich, Bennett A. Landman
For the entire study cohort, the optimized pipeline achieves a registration success rate of 91. 7%.
no code implementations • 19 Oct 2020 • Riqiang Gao, Yucheng Tang, Kaiwen Xu, Michael N. Kammer, Sanja L. Antic, Steve Deppen, Kim L. Sandler, Pierre P. Massion, Yuankai Huo, Bennett A. Landman
The network can be trained end-to-end with both medical image features and CDEs/biomarkers, or make a prediction with single modality.
no code implementations • 10 Feb 2020 • Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
A 2015 MICCAI challenge spurred substantial innovation in multi-organ abdominal CT segmentation with both traditional and deep learning methods.
no code implementations • 10 Feb 2020 • Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
We built on a pre-trained 3D U-Net model for abdominal multi-organ segmentation and augmented the dataset either with outlier data (e. g., exemplars for which the baseline algorithm failed) or inliers (e. g., exemplars for which the baseline algorithm worked).
1 code implementation • 16 Dec 2019 • Yiyuan Yang, Riqiang Gao, Yucheng Tang, Sanja L. Antic, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman
To improve performance on the primary task, we propose an Internal-Transfer Weighting (ITW) strategy to suppress the loss functions on auxiliary tasks for the final stages of training.
no code implementations • 14 Nov 2019 • Yucheng Tang, Ho Hin Lee, Yuchen Xu, Olivia Tang, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Camilo Bermudez, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
Dynamic contrast enhanced computed tomography (CT) is an imaging technique that provides critical information on the relationship of vascular structure and dynamics in the context of underlying anatomy.
no code implementations • 12 Nov 2019 • Riqiang Gao, Lingfeng li, Yucheng Tang, Sanja L. Antic, Alexis B. Paulson, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman
Annual low dose computed tomography (CT) lung screening is currently advised for individuals at high risk of lung cancer (e. g., heavy smokers between 55 and 80 years old).
no code implementations • 12 Nov 2019 • Ho Hin Lee, Yucheng Tang, Olivia Tang, Yuchen Xu, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman
The contributions of the proposed method are threefold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional true/false, and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more robust and higher accuracy than the original baseline method.
no code implementations • 11 Sep 2019 • Riqiang Gao, Yuankai Huo, Shunxing Bao, Yucheng Tang, Sanja L. Antic, Emily S. Epstein, Aneri B. Balar, Steve Deppen, Alexis B. Paulson, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman
To model both regular and irregular longitudinal samples, we generalize the LSTM model with the Distanced LSTM (DLSTM) for temporally varied acquisitions.
no code implementations • 21 Feb 2019 • Jiachen Wang, Riqiang Gao, Yuankai Huo, Shunxing Bao, Yunxi Xiong, Sanja L. Antic, Travis J. Osterman, Pierre P. Massion, Bennett A. Landman
The results show that the AUC obtained from clinical demographics alone was 0. 635 while the attention network alone reached an accuracy of 0. 687.