no code implementations • 15 Mar 2021 • Alexandru Cioba, Michael Bromberg, Qian Wang, Ritwik Niyogi, Georgios Batzolis, Jezabel Garcia, Da-Shan Shiu, Alberto Bernacchia
We show that: 1) If tasks are homogeneous, there is a uniform optimal allocation, whereby all tasks get the same amount of data; 2) At fixed budget, there is a trade-off between number of tasks and number of data points per task, with a unique solution for the optimum; 3) When trained separately, harder task should get more data, at the cost of a smaller number of tasks; 4) When training on a mixture of easy and hard tasks, more data should be allocated to easy tasks.