no code implementations • 24 Sep 2024 • Roberto Alcover-Couso, Juan C. SanMiguel, Marcos Escudero-Viñolo, Jose M Martínez
In this paper, we leverage the abundance of freely accessible trained models to introduce a cost-free approach to model merging.
no code implementations • 1 Jul 2024 • Roberto Alcover-Couso, Marcos Escudero-Viñolo, Juan C. SanMiguel, Jesus Bescós
In unsupervised domain adaptation (UDA), where models are trained on source data (e. g., synthetic) and adapted to target data (e. g., real-world) without target annotations, addressing the challenge of significant class imbalance remains an open issue.
1 code implementation • CVPR 2024 • Pablo Marcos-Manchón, Roberto Alcover-Couso, Juan C. SanMiguel, Jose M. Martínez
This approach limits the generation of segmentation masks derived from word tokens not contained in the text prompt.
no code implementations • 27 Sep 2023 • Xuanlong Yu, Yi Zuo, Zitao Wang, Xiaowen Zhang, Jiaxuan Zhao, Yuting Yang, Licheng Jiao, Rui Peng, Xinyi Wang, Junpei Zhang, Kexin Zhang, Fang Liu, Roberto Alcover-Couso, Juan C. SanMiguel, Marcos Escudero-Viñolo, Hanlin Tian, Kenta Matsui, Tianhao Wang, Fahmy Adan, Zhitong Gao, Xuming He, Quentin Bouniot, Hossein Moghaddam, Shyam Nandan Rai, Fabio Cermelli, Carlo Masone, Andrea Pilzer, Elisa Ricci, Andrei Bursuc, Arno Solin, Martin Trapp, Rui Li, Angela Yao, Wenlong Chen, Ivor Simpson, Neill D. F. Campbell, Gianni Franchi
This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023.
1 code implementation • 27 Feb 2023 • Roberto Alcover-Couso, Marcos Escudero-Vinolo, Juan C. SanMiguel, Jose M. Martinez
To that aim, we propose a novel framework for label down-sampling via soft-labeling that better conserves label information after down-sampling.
Ranked #11 on Semantic Segmentation on Cityscapes val