no code implementations • 28 Aug 2024 • Farzaneh Dehghani, Mahsa Dibaji, Fahim Anzum, Lily Dey, Alican Basdemir, Sayeh Bayat, Jean-Christophe Boucher, Steve Drew, Sarah Elaine Eaton, Richard Frayne, Gouri Ginde, Ashley Harris, Yani Ioannou, Catherine Lebel, John Lysack, Leslie Salgado Arzuaga, Emma Stanley, Roberto Souza, Ronnie de Souza Santos, Lana Wells, Tyler Williamson, Matthias Wilms, Zaman Wahid, Mark Ungrin, Marina Gavrilova, Mariana Bento
Artificial Intelligence (AI) has paved the way for revolutionary decision-making processes, which if harnessed appropriately, can contribute to advancements in various sectors, from healthcare to economics.
no code implementations • 26 Nov 2023 • Gabriel Dias, Rodrigo Pommot Berto, Mateus Oliveira, Lucas Ueda, Sergio Dertkigil, Paula D. P. Costa, Amirmohammad Shamaei, Roberto Souza, Ashley Harris, Leticia Rittner
Purpose: To investigate the use of a Vision Transformer (ViT) to reconstruct/denoise GABA-edited magnetic resonance spectroscopy (MRS) from a quarter of the typically acquired number of transients using spectrograms.
1 code implementation • 17 Oct 2023 • Neha Gianchandani, Mahsa Dibaji, Johanna Ospel, Fernando Vega, Mariana Bento, M. Ethan MacDonald, Roberto Souza
Brain aging is a regional phenomenon, a facet that remains relatively under-explored within the realm of brain age prediction research using machine learning methods.
no code implementations • 17 Oct 2023 • Mahsa Dibaji, Neha Gianchandani, Akhil Nair, Mansi Singhal, Roberto Souza, Mariana Bento
We found disparities in the performance of brain age prediction models when trained on distinct sex subgroups and datasets, in both final predictions and decision making (assessed using interpretability models).
no code implementations • 18 Sep 2023 • Reza Kakavand, Mehrdad Palizi, Peyman Tahghighi, Reza Ahmadi, Neha Gianchandani, Samer Adeeb, Roberto Souza, W. Brent Edwards, Amin Komeili
The predicted mechanical response of manual and semi-automated FE models were compared.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
no code implementations • 23 Aug 2023 • Neha Gianchandani, Mahsa Dibaji, Mariana Bento, Ethan MacDonald, Roberto Souza
Deep learning models have achieved state-of-the-art results in estimating brain age, which is an important brain health biomarker, from magnetic resonance (MR) images.
2 code implementations • arXiv 2022 • Alexandre Lopes, Roberto Souza, Helio Pedrini
RGB-D data is essential for solving many problems in computer vision.
1 code implementation • 5 Jan 2022 • Amin Eslami Abyane, Derui Zhu, Roberto Souza, Lei Ma, Hadi Hemmati
Therefore, to better understand the current quality status and challenges of these SOTA FL techniques in the presence of attacks and faults, we perform a large-scale empirical study to investigate the SOTA FL's quality from multiple angles of attacks, simulated faults (via mutation operators), and aggregation (defense) methods.
1 code implementation • 10 Nov 2020 • Youssef Beauferris, Jonas Teuwen, Dimitrios Karkalousos, Nikita Moriakov, Mattha Caan, George Yiasemis, Lívia Rodrigues, Alexandre Lopes, Hélio Pedrini, Letícia Rittner, Maik Dannecker, Viktor Studenyak, Fabian Gröger, Devendra Vyas, Shahrooz Faghih-Roohi, Amrit Kumar Jethi, Jaya Chandra Raju, Mohanasankar Sivaprakasam, Mike Lasby, Nikita Nogovitsyn, Wallace Loos, Richard Frayne, Roberto Souza
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process.
no code implementations • 4 Nov 2019 • Roberto Souza, Mariana Bento, Nikita Nogovitsyn, Kevin J. Chung, R. Marc Lebel, Richard Frayne
The two element network combinations were evaluated for the four possible image-k-space domain configurations: a) W-net II, b) W-net KK, c) W-net IK, and d) W-net KI were evaluated.
1 code implementation • 30 Oct 2018 • Roberto Souza, Richard Frayne
Our experiments demonstrated, using MR raw k-space data, that the proposed hybrid approach can potentially improve CS reconstruction compared to deep-learning networks that operate only in the image domain.
1 code implementation • 13 Apr 2018 • Oeslle Lucena, Roberto Souza, Leticia Rittner, Richard Frayne, Roberto Lotufo
Our use of silver standard masks reduced the cost of manual annotation, decreased inter-intra-rater variability, and avoided CNN segmentation super-specialization towards one specific manual annotation guideline that can occur when gold standard masks are used.