Search Results for author: Rodrigo Santa Cruz

Found 13 papers, 2 papers with code

Divide and Conquer: Rethinking the Training Paradigm of Neural Radiance Fields

no code implementations29 Jan 2024 Rongkai Ma, Leo Lebrat, Rodrigo Santa Cruz, Gil Avraham, Yan Zuo, Clinton Fookes, Olivier Salvado

Neural radiance fields (NeRFs) have exhibited potential in synthesizing high-fidelity views of 3D scenes but the standard training paradigm of NeRF presupposes an equal importance for each image in the training set.

CorticalFlow$^{++}$: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability

no code implementations14 Jun 2022 Rodrigo Santa Cruz, Léo Lebrat, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

Using the state-of-the-art CorticalFlow model as a blueprint, this paper proposes three modifications to improve its accuracy and interoperability with existing surface analysis tools, while not sacrificing its fast inference time and low GPU memory consumption.

Surface Reconstruction

CorticalFlow: A Diffeomorphic Mesh Deformation Module for Cortical Surface Reconstruction

no code implementations6 Jun 2022 Léo Lebrat, Rodrigo Santa Cruz, Frédéric de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

In this paper we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.

Surface Reconstruction

CorticalFlow: A Diffeomorphic Mesh Transformer Network for Cortical Surface Reconstruction

1 code implementation NeurIPS 2021 Leo Lebrat, Rodrigo Santa Cruz, Frederic de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

In this paper, we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.

Surface Reconstruction

MongeNet: Efficient Sampler for Geometric Deep Learning

1 code implementation CVPR 2021 Léo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado

Recent advances in geometric deep-learning introduce complex computational challenges for evaluating the distance between meshes.

DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction

no code implementations22 Oct 2020 Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, Olivier Salvado

Having these limitations in mind, we propose DeepCSR, a 3D deep learning framework for cortical surface reconstruction from MRI.

Surface Reconstruction

Neural Algebra of Classifiers

no code implementations26 Jan 2018 Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould

In this paper, we build on the compositionality principle and develop an "algebra" to compose classifiers for complex visual concepts.

Cannot find the paper you are looking for? You can Submit a new open access paper.