no code implementations • COLING 2022 • Rolando Coto-Solano
Future research needs to further explore the patterns of morphological/structural learning, to examine the behavior of deep learning embeddings, and to establish a human baseline.
no code implementations • NAACL (AmericasNLP) 2021 • Rolando Coto-Solano
Linguistic tone is transcribed for input into ASR systems in numerous ways.
no code implementations • NAACL (AmericasNLP) 2021 • Manuel Mager, Arturo Oncevay, Abteen Ebrahimi, John Ortega, Annette Rios, Angela Fan, Ximena Gutierrez-Vasques, Luis Chiruzzo, Gustavo Giménez-Lugo, Ricardo Ramos, Ivan Vladimir Meza Ruiz, Rolando Coto-Solano, Alexis Palmer, Elisabeth Mager-Hois, Vishrav Chaudhary, Graham Neubig, Ngoc Thang Vu, Katharina Kann
This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas.
no code implementations • LREC 2022 • Rolando Coto-Solano, Sally Akevai Nicholas, Samiha Datta, Victoria Quint, Piripi Wills, Emma Ngakuravaru Powell, Liam Koka’ua, Syed Tanveer, Isaac Feldman
This paper describes the process of data processing and training of an automatic speech recognition (ASR) system for Cook Islands Māori (CIM), an Indigenous language spoken by approximately 22, 000 people in the South Pacific.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
1 code implementation • 15 Feb 2023 • Abteen Ebrahimi, Arya D. McCarthy, Arturo Oncevay, Luis Chiruzzo, John E. Ortega, Gustavo A. Giménez-Lugo, Rolando Coto-Solano, Katharina Kann
However, the languages most in need of automatic alignment are low-resource and, thus, not typically included in the pretraining data.
1 code implementation • ACL 2022 • Abteen Ebrahimi, Manuel Mager, Arturo Oncevay, Vishrav Chaudhary, Luis Chiruzzo, Angela Fan, John Ortega, Ricardo Ramos, Annette Rios, Ivan Meza-Ruiz, Gustavo A. Giménez-Lugo, Elisabeth Mager, Graham Neubig, Alexis Palmer, Rolando Coto-Solano, Ngoc Thang Vu, Katharina Kann
Continued pretraining offers improvements, with an average accuracy of 44. 05%.
1 code implementation • COLING 2020 • Isaac Feldman, Rolando Coto-Solano
This paper presents a neural machine translation model and dataset for the Chibchan language Bribri, with an average performance of BLEU 16. 9{\mbox{$\pm$}}1. 7.