1 code implementation • ECCV 2020 • Roman Klokov, Edmond Boyer, Jakob Verbeek
Generative models have proven effective at modeling 3D shapes and their statistical variations.
1 code implementation • 20 Aug 2019 • Roman Klokov, Jakob Verbeek, Edmond Boyer
We study end-to-end learning strategies for 3D shape inference from images, in particular from a single image.
1 code implementation • 17 Oct 2017 • Li Yi, Lin Shao, Manolis Savva, Haibin Huang, Yang Zhou, Qirui Wang, Benjamin Graham, Martin Engelcke, Roman Klokov, Victor Lempitsky, Yuan Gan, Pengyu Wang, Kun Liu, Fenggen Yu, Panpan Shui, Bingyang Hu, Yan Zhang, Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Minki Jeong, Jaehoon Choi, Changick Kim, Angom Geetchandra, Narasimha Murthy, Bhargava Ramu, Bharadwaj Manda, M. Ramanathan, Gautam Kumar, P Preetham, Siddharth Srivastava, Swati Bhugra, Brejesh lall, Christian Haene, Shubham Tulsiani, Jitendra Malik, Jared Lafer, Ramsey Jones, Siyuan Li, Jie Lu, Shi Jin, Jingyi Yu, Qi-Xing Huang, Evangelos Kalogerakis, Silvio Savarese, Pat Hanrahan, Thomas Funkhouser, Hao Su, Leonidas Guibas
We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database.
2 code implementations • ICCV 2017 • Roman Klokov, Victor Lempitsky
We present a new deep learning architecture (called Kd-network) that is designed for 3D model recognition tasks and works with unstructured point clouds.
Ranked #55 on
3D Part Segmentation
on ShapeNet-Part