no code implementations • Findings (EMNLP) 2021 • Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi
Scripts – prototypical event sequences describing everyday activities – have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information.
no code implementations • 16 Nov 2023 • Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin Choi, Thomas L. Griffiths, Faeze Brahman
We explore the creative problem-solving capabilities of modern large language models (LLMs) in a constrained setting.
no code implementations • 24 Oct 2023 • Hyunwoo Kim, Melanie Sclar, Xuhui Zhou, Ronan Le Bras, Gunhee Kim, Yejin Choi, Maarten Sap
Theory of mind (ToM) evaluations currently focus on testing models using passive narratives that inherently lack interactivity.
no code implementations • 4 Jun 2023 • Wangchunshu Zhou, Ronan Le Bras, Yejin Choi
Modular Transformers train modularized layers that have the same function of two or more consecutive layers in the original model via module replacing and knowledge distillation.
no code implementations • 4 Jun 2023 • Wangchunshu Zhou, Ronan Le Bras, Yejin Choi
In this work, we introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
1 code implementation • 2 Jun 2023 • Sebastin Santy, Jenny T. Liang, Ronan Le Bras, Katharina Reinecke, Maarten Sap
We introduce NLPositionality, a framework for characterizing design biases and quantifying the positionality of NLP datasets and models.
1 code implementation • NeurIPS 2023 • Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi
We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures.
no code implementations • 26 May 2023 • Julia Mendelsohn, Ronan Le Bras, Yejin Choi, Maarten Sap
Dogwhistles are coded expressions that simultaneously convey one meaning to a broad audience and a second one, often hateful or provocative, to a narrow in-group; they are deployed to evade both political repercussions and algorithmic content moderation.
1 code implementation • 24 May 2023 • Ashutosh Baheti, Ximing Lu, Faeze Brahman, Ronan Le Bras, Maarten Sap, Mark Riedl
We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data.
1 code implementation • CVPR 2023 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, Jae Sung Park, Ximing Lu, Rowan Zellers, Prithviraj Ammanabrolu, Ronan Le Bras, Gunhee Kim, Yejin Choi
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e. g. commonsense graphs [6], ethical norms [25]), and larger models like GPT-3 manifest broad commonsense reasoning capacity.
1 code implementation • 20 Dec 2022 • Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras, Malihe Alikhani, Gunhee Kim, Maarten Sap, Yejin Choi
Data scarcity has been a long standing issue in the field of open-domain social dialogue.
no code implementations • 19 Dec 2022 • Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Lianhui Qin, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, Yejin Choi
Here, we investigate an alternative that a priori seems impossible: can smaller language models (e. g., GPT-2) win over models that are orders of magnitude larger and better (e. g., GPT-3), if powered with novel commonsense distillation algorithms?
1 code implementation • 25 May 2022 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, JaeSung Park, Ximing Lu, Prithviraj Ammanabrolu, Rowan Zellers, Ronan Le Bras, Gunhee Kim, Yejin Choi
Large language models readily adapt to novel settings, even without task-specific training data.
no code implementations • 24 May 2022 • JaeHun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, Yejin Choi
Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this.
1 code implementation • 19 May 2022 • Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Hao Peng, Ximing Lu, Dragomir Radev, Yejin Choi, Noah A. Smith
Our extensive evaluations on machine translation and scientific paper summarization demonstrate that Twist decoding substantially outperforms each model decoded in isolation over various scenarios, including cases where domain-specific and general-purpose models are both available.
1 code implementation • 11 Apr 2022 • Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Dragomir Radev, Yejin Choi, Noah A. Smith
Text generation with beam search has proven successful in a wide range of applications.
no code implementations • 14 Jan 2022 • Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, Jonathan Berant
Constructing benchmarks that test the abilities of modern natural language understanding models is difficult - pre-trained language models exploit artifacts in benchmarks to achieve human parity, but still fail on adversarial examples and make errors that demonstrate a lack of common sense.
1 code implementation • NAACL 2022 • Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, Yejin Choi
To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction.
Ranked #1 on
Text Generation
on ROCStories
2 code implementations • NAACL 2022 • Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Lavinia Dunagan, Jacob Morrison, Alexander R. Fabbri, Yejin Choi, Noah A. Smith
We therefore propose a generalization of leaderboards, bidimensional leaderboards (Billboards), that simultaneously tracks progress in language generation models and metrics for their evaluation.
2 code implementations • NAACL 2022 • Jungo Kasai, Keisuke Sakaguchi, Lavinia Dunagan, Jacob Morrison, Ronan Le Bras, Yejin Choi, Noah A. Smith
We establish THumB, a rubric-based human evaluation protocol for image captioning models.
1 code implementation • ACL 2022 • Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, Hannaneh Hajishirzi
It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models.
1 code implementation • NAACL 2022 • Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean Welleck, Yejin Choi
We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
1 code implementation • 14 Oct 2021 • Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge, Keisuke Sakaguchi, Maxwell Forbes, Jon Borchardt, Saadia Gabriel, Yulia Tsvetkov, Oren Etzioni, Maarten Sap, Regina Rini, Yejin Choi
As AI systems become increasingly powerful and pervasive, there are growing concerns about machines' morality or a lack thereof.
3 code implementations • EMNLP 2021 • Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, Yejin Choi
Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans.
Ranked #1 on
Hallucination Pair-wise Detection (4-ref)
on FOIL
Hallucination Pair-wise Detection (1-ref)
Hallucination Pair-wise Detection (4-ref)
+3
no code implementations • 16 Apr 2021 • Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi
Scripts - standardized event sequences describing typical everyday activities - have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information.
1 code implementation • 24 Mar 2021 • Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
First, we propose a new multitask benchmark, RAINBOW, to promote research on commonsense models that generalize well over multiple tasks and datasets.
1 code implementation • 24 Mar 2021 • Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho
Understanding and creating mathematics using natural mathematical language - the mixture of symbolic and natural language used by humans - is a challenging and important problem for driving progress in machine learning.
1 code implementation • AKBC 2021 • Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, Antoine Bosselut
Our results show that commonsense knowledge models can rapidly adapt from limited examples, indicating that KG fine-tuning serves to learn an interface to encoded knowledge learned during pretraining.
1 code implementation • EMNLP 2021 • Denis Emelin, Ronan Le Bras, Jena D. Hwang, Maxwell Forbes, Yejin Choi
In social settings, much of human behavior is governed by unspoken rules of conduct.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Rachel Rudinger, Vered Shwartz, Jena D. Hwang, Chandra Bhagavatula, Maxwell Forbes, Ronan Le Bras, Noah A. Smith, Yejin Choi
Defeasible inference is a mode of reasoning in which an inference (X is a bird, therefore X flies) may be weakened or overturned in light of new evidence (X is a penguin).
no code implementations • NAACL 2021 • Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Ana Marasović, Chandra Bhagavatula, Jae Sung Park, Ronan Le Bras, Noah A. Smith, Yejin Choi
Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights.
1 code implementation • EMNLP 2020 • Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras, Antoine Bosselut, Yejin Choi
Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future.
3 code implementations • 12 Oct 2020 • Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, Yejin Choi
Next, we show that ATOMIC 2020 is better suited for training knowledge models that can generate accurate, representative knowledge for new, unseen entities and events.
1 code implementation • 4 Oct 2020 • Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell Forbes, Yejin Choi
Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text.
1 code implementation • 20 Aug 2020 • Nicholas Lourie, Ronan Le Bras, Yejin Choi
As AI systems become an increasing part of people's everyday lives, it becomes ever more important that they understand people's ethical norms.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, Doug Downey
Recent advances in commonsense reasoning depend on large-scale human-annotated training data to achieve peak performance.
Ranked #1 on
Question Answering
on CODAH
1 code implementation • EMNLP 2020 • Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
Natural language understanding involves reading between the lines with implicit background knowledge.
1 code implementation • ICML 2020 • Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, Yejin Choi
Large neural models have demonstrated human-level performance on language and vision benchmarks, while their performance degrades considerably on adversarial or out-of-distribution samples.
2 code implementations • 26 Nov 2019 • Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, Yejin Choi
Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems.
Natural Language Understanding
Physical Commonsense Reasoning
+1
no code implementations • 10 Nov 2019 • Antoine Bosselut, Ronan Le Bras, Yejin Choi
Understanding narratives requires reasoning about implicit world knowledge related to the causes, effects, and states of situations described in text.
no code implementations • IJCNLP 2019 • Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, Yejin Choi
We introduce Social IQa, the first large-scale benchmark for commonsense reasoning about social situations.
no code implementations • IJCNLP 2019 • Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
In this paper, we introduce Cosmos QA, a large-scale dataset of 35, 600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions.
2 code implementations • ICLR 2020 • Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Scott Wen-tau Yih, Yejin Choi
Abductive reasoning is inference to the most plausible explanation.
3 code implementations • 24 Jul 2019 • Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations.
1 code implementation • SEMEVAL 2019 • Mark Hopkins, Ronan Le Bras, Cristian Petrescu-Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi, Rik Koncel-Kedziorski
Systems were evaluated based on the percentage of correctly answered questions.
no code implementations • EMNLP 2017 • Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin, Ronan Le Bras, Alvaro Herrasti, Vidur Joshi
We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions {--} the math portion of the Scholastic Aptitude Test (SAT).
1 code implementation • 3 Oct 2016 • Yexiang Xue, Junwen Bai, Ronan Le Bras, Brendan Rappazzo, Richard Bernstein, Johan Bjorck, Liane Longpre, Santosh K. Suram, Robert B. van Dover, John Gregoire, Carla P. Gomes
A key problem in materials discovery, the phase map identification problem, involves the determination of the crystal phase diagram from the materials' composition and structural characterization data.
no code implementations • 17 Aug 2015 • Yexiang Xue, Stefano Ermon, Ronan Le Bras, Carla P. Gomes, Bart Selman
The ability to represent complex high dimensional probability distributions in a compact form is one of the key insights in the field of graphical models.
no code implementations • 27 Nov 2014 • Stefano Ermon, Ronan Le Bras, Santosh K. Suram, John M. Gregoire, Carla Gomes, Bart Selman, Robert B. van Dover
Identifying important components or factors in large amounts of noisy data is a key problem in machine learning and data mining.