no code implementations • 23 May 2025 • Gaole Dai, Menghang Dong, Rongyu Zhang, Ruichuan An, Shanghang Zhang, Tiejun Huang
These models not only facilitate the conditional fusion of existing information from both spike and RGB modalities but also enable the conditional generation based on latent priors.
no code implementations • 22 May 2025 • Shuhao Han, Haotian Fan, Fangyuan Kong, Wenjie Liao, Chunle Guo, Chongyi Li, Radu Timofte, Liang Li, Tao Li, Junhui Cui, Yunqiu Wang, Yang Tai, Jingwei Sun, Jianhui Sun, Xinli Yue, Tianyi Wang, Huan Hou, Junda Lu, Xinyang Huang, Zitang Zhou, Zijian Zhang, Xuhui Zheng, Xuecheng Wu, Chong Peng, Xuezhi Cao, Trong-Hieu Nguyen-Mau, Minh-Hoang Le, Minh-Khoa Le-Phan, Duy-Nam Ly, Hai-Dang Nguyen, Minh-Triet Tran, Yukang Lin, Yan Hong, Chuanbiao Song, Siyuan Li, Jun Lan, Zhichao Zhang, Xinyue Li, Wei Sun, ZiCheng Zhang, Yunhao Li, Xiaohong Liu, Guangtao Zhai, Zitong Xu, Huiyu Duan, Jiarui Wang, Guangji Ma, Liu Yang, Lu Liu, Qiang Hu, Xiongkuo Min, Zichuan Wang, Zhenchen Tang, Bo Peng, Jing Dong, Fengbin Guan, Zihao Yu, Yiting Lu, Wei Luo, Xin Li, Minhao Lin, Haofeng Chen, Xuanxuan He, Kele Xu, Qisheng Xu, Zijian Gao, Tianjiao Wan, Bo-Cheng Qiu, Chih-Chung Hsu, Chia-Ming Lee, Yu-Fan Lin, Bo Yu, Zehao Wang, Da Mu, Mingxiu Chen, Junkang Fang, Huamei Sun, Wending Zhao, Zhiyu Wang, Wang Liu, Weikang Yu, Puhong Duan, Bin Sun, Xudong Kang, Shutao Li, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Jiarong He, Zhishan Qiao, Yongqing Huang, Zewen Chen, Zhe Pang, Juan Wang, Jian Guo, Zhizhuo Shao, Ziyu Feng, Bing Li, Weiming Hu, Hesong Li, Dehua Liu, Zeming Liu, Qingsong Xie, Ruichen Wang, Zhihao LI, Yuqi Liang, Jianqi Bi, Jun Luo, Junfeng Yang, Can Li, Jing Fu, Hongwei Xu, Mingrui Long, Lulin Tang
A total of 211 participants have registered in the structure track.
no code implementations • 26 Mar 2025 • Rongyu Zhang, Menghang Dong, Yuan Zhang, Liang Heng, Xiaowei Chi, Gaole Dai, Li Du, Yuan Du, Shanghang Zhang
Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework.
no code implementations • 25 Jan 2025 • Yijiang Liu, Hengyu Fang, Liulu He, Rongyu Zhang, Yichuan Bai, Yuan Du, Li Du
Deploying Large Language Models (LLMs) on edge devices is increasingly important, as it eliminates reliance on network connections, reduces expensive API calls, and enhances user privacy.
no code implementations • 2 Dec 2024 • Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Luis F. Gomez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti
In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
no code implementations • 20 Oct 2024 • Xiaowei Chi, Chun-Kai Fan, Hengyuan Zhang, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-Min Chan, Wei Xue, Qifeng Liu, Shanghang Zhang, Yike Guo
It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios.
2 code implementations • 27 Aug 2024 • Yijiang Liu, Huanrui Yang, Youxin Chen, Rongyu Zhang, Miao Wang, Yuan Du, Li Du
Since the model fine-tuning refines the general and chaotic knowledge in pre-trained models, we aim to incorporate structural pruning with the fine-tuning, and propose the Pruning-Aware Tuning (PAT) paradigm to eliminate model redundancy while preserving the model performance to the maximum extend.
1 code implementation • 15 Aug 2024 • Zhongyu Zhao, Menghang Dong, Rongyu Zhang, Wenzhao Zheng, Yunpeng Zhang, Huanrui Yang, Dalong Du, Kurt Keutzer, Shanghang Zhang
Recent research has demonstrated that Feed-Forward Networks (FFNs) in Large Language Models (LLMs) play a pivotal role in storing diverse linguistic and factual knowledge.
1 code implementation • 30 Jul 2024 • Xiaowei Chi, Yatian Wang, Aosong Cheng, Pengjun Fang, Zeyue Tian, Yingqing He, Zhaoyang Liu, Xingqun Qi, Jiahao Pan, Rongyu Zhang, Mengfei Li, Ruibin Yuan, Yanbing Jiang, Wei Xue, Wenhan Luo, Qifeng Chen, Shanghang Zhang, Qifeng Liu, Yike Guo
To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions.
1 code implementation • 29 May 2024 • Gaole Dai, Cheng-Ching Tseng, Qingpo Wuwu, Rongyu Zhang, Shaokang Wang, Ming Lu, Tiejun Huang, Yu Zhou, Ali Ata Tuz, Matthias Gunzer, Jianxu Chen, Shanghang Zhang
The rapid pace of innovation in biological microscopy imaging has led to large images, putting pressure on data storage and impeding efficient sharing, management, and visualization.
1 code implementation • 26 May 2024 • Rongyu Zhang, Aosong Cheng, Yulin Luo, Gaole Dai, Huanrui Yang, Jiaming Liu, ran Xu, Li Du, Yuan Du, Yanbing Jiang, Shanghang Zhang
Continual Test-Time Adaptation (CTTA), which aims to adapt the pre-trained model to ever-evolving target domains, emerges as an important task for vision models.
no code implementations • 10 May 2024 • Rongyu Zhang, Yun Chen, Chenrui Wu, Fangxin Wang, Bo Li
Federated learning (FL) offers a privacy-centric distributed learning framework, enabling model training on individual clients and central aggregation without necessitating data exchange.
2 code implementations • 16 Apr 2024 • Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti
Synthetic data is gaining increasing relevance for training machine learning models.
no code implementations • 13 Apr 2024 • Yijiang Liu, Rongyu Zhang, Huanrui Yang, Kurt Keutzer, Yuan Du, Li Du, Shanghang Zhang
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation.
no code implementations • 15 Jan 2024 • Rongyu Zhang, Zefan Cai, Huanrui Yang, Zidong Liu, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, Baobao Chang, Yuan Du, Li Du, Shanghang Zhang
Finetuning a pretrained vision model (PVM) is a common technique for learning downstream vision tasks.
no code implementations • 27 Dec 2023 • Rongyu Zhang, Yulin Luo, Jiaming Liu, Huanrui Yang, Zhen Dong, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, Yuan Du, Shanghang Zhang
In this work, we propose an efficient MoE architecture with weight sharing across the experts.
1 code implementation • 29 Nov 2023 • Xiaowei Chi, Rongyu Zhang, Zhengkai Jiang, Yijiang Liu, Yatian Wang, Xingqun Qi, Wenhan Luo, Peng Gao, Shanghang Zhang, Qifeng Liu, Yike Guo
Moreover, to further enhance the effectiveness of $M^{3}Adapter$ while preserving the coherence of semantic context comprehension, we introduce a two-stage $M^{3}FT$ fine-tuning strategy.
no code implementations • 19 Jul 2023 • Xiaohong Liu, Xiongkuo Min, Wei Sun, Yulun Zhang, Kai Zhang, Radu Timofte, Guangtao Zhai, Yixuan Gao, Yuqin Cao, Tengchuan Kou, Yunlong Dong, Ziheng Jia, Yilin Li, Wei Wu, Shuming Hu, Sibin Deng, Pengxiang Xiao, Ying Chen, Kai Li, Kai Zhao, Kun Yuan, Ming Sun, Heng Cong, Hao Wang, Lingzhi Fu, Yusheng Zhang, Rongyu Zhang, Hang Shi, Qihang Xu, Longan Xiao, Zhiliang Ma, Mirko Agarla, Luigi Celona, Claudio Rota, Raimondo Schettini, Zhiwei Huang, Yanan Li, Xiaotao Wang, Lei Lei, Hongye Liu, Wei Hong, Ironhead Chuang, Allen Lin, Drake Guan, Iris Chen, Kae Lou, Willy Huang, Yachun Tasi, Yvonne Kao, Haotian Fan, Fangyuan Kong, Shiqi Zhou, Hao liu, Yu Lai, Shanshan Chen, Wenqi Wang, HaoNing Wu, Chaofeng Chen, Chunzheng Zhu, Zekun Guo, Shiling Zhao, Haibing Yin, Hongkui Wang, Hanene Brachemi Meftah, Sid Ahmed Fezza, Wassim Hamidouche, Olivier Déforges, Tengfei Shi, Azadeh Mansouri, Hossein Motamednia, Amir Hossein Bakhtiari, Ahmad Mahmoudi Aznaveh
61 participating teams submitted their prediction results during the development phase, with a total of 3168 submissions.
no code implementations • 27 Mar 2023 • Rongyu Zhang, Xiaowei Chi, Guiliang Liu, Wenyi Zhang, Yuan Du, Fangxin Wang
Multimodal learning has seen great success mining data features from multiple modalities with remarkable model performance improvement.
no code implementations • CVPR 2023 • Xiaowei Chi, Jiaming Liu, Ming Lu, Rongyu Zhang, Zhaoqing Wang, Yandong Guo, Shanghang Zhang
In order to find them, we further propose a LiDAR-guided sampling strategy to leverage the statistical distribution of LiDAR to determine the heights of local slices.
no code implementations • CVPR 2023 • Yulu Gan, Mingjie Pan, Rongyu Zhang, Zijian Ling, Lingran Zhao, Jiaming Liu, Shanghang Zhang
To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model.
no code implementations • 30 Nov 2022 • Jiaming Liu, Rongyu Zhang, Xiaoqi Li, Xiaowei Chi, Zehui Chen, Ming Lu, Yandong Guo, Shanghang Zhang
In this paper, we propose a Multi-space Alignment Teacher-Student (MATS) framework to ease the domain shift accumulation, which consists of a Depth-Aware Teacher (DAT) and a Geometric-space Aligned Student (GAS) model.
no code implementations • 8 Aug 2022 • Heng Cong, Lingzhi Fu, Rongyu Zhang, Yusheng Zhang, Hao Wang, Jiarong He, Jin Gao
In this work, we introduce Gradient Siamese Network (GSN) for image quality assessment.
Full reference image quality assessment
Full-Reference Image Quality Assessment
no code implementations • 8 Aug 2022 • Heng Cong, Rongyu Zhang, Jiarong He, Jin Gao
Face anti-spoofing researches are widely used in face recognition and has received more attention from industry and academics.