no code implementations • 14 Nov 2024 • Soumick Chatterjee, Hendrik Mattern, Marc Dörner, Alessandro Sciarra, Florian Dubost, Hannes Schnurre, Rupali Khatun, Chun-Chih Yu, Tsung-Lin Hsieh, Yi-Shan Tsai, Yi-Zeng Fang, Yung-Ching Yang, Juinn-Dar Huang, Marshall Xu, Siyu Liu, Fernanda L. Ribeiro, Saskia Bollmann, Karthikesh Varma Chintalapati, Chethan Mysuru Radhakrishna, Sri Chandana Hudukula Ram Kumara, Raviteja Sutrave, Abdul Qayyum, Moona Mazher, Imran Razzak, Cristobal Rodero, Steven Niederren, Fengming Lin, Yan Xia, Jiacheng Wang, Riyu Qiu, Liansheng Wang, Arya Yazdan Panah, Rosana El Jurdi, Guanghui Fu, Janan Arslan, Ghislain Vaillant, Romain Valabregue, Didier Dormont, Bruno Stankoff, Olivier Colliot, Luisa Vargas, Isai Daniel Chacón, Ioannis Pitsiorlas, Pablo Arbeláez, Maria A. Zuluaga, Stefanie Schreiber, Oliver Speck, Andreas Nürnberger
The human brain receives nutrients and oxygen through an intricate network of blood vessels.
no code implementations • 2 Nov 2022 • Guanghui Fu, Gabriel Jimenez, Sophie Loizillon, Rosana El Jurdi, Lydia Chougar, Didier Dormont, Romain Valabregue, Ninon Burgos, Stéphane Lehéricy, Daniel Racoceanu, Olivier Colliot, the ICEBERG Study Group
In this paper, we propose a new model that integrates prior knowledge from different contrasts for red nucleus segmentation.
no code implementations • 26 Oct 2022 • Rosana El Jurdi, Olivier Colliot
An important issue in medical image processing is to be able to estimate not only the performances of algorithms but also the precision of the estimation of these performances.
1 code implementation • 7 Jan 2022 • Rosana El Jurdi, Caroline Petitjean, Veronika Cheplygina, Paul Honeine, Fahed Abdallah
To enforce anatomical plausibility, recent research studies have focused on incorporating prior knowledge such as object shape or boundary, as constraints in the loss function.
no code implementations • 16 Nov 2020 • Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah
Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks.