10 code implementations • Preprint 2023 • OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, Barret Zoph
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
Ranked #1 on Visual Question Answering on BenchLMM (using extra training data)
1 code implementation • CVPR 2023 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, Jae Sung Park, Ximing Lu, Rowan Zellers, Prithviraj Ammanabrolu, Ronan Le Bras, Gunhee Kim, Yejin Choi
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e. g. commonsense graphs [6], ethical norms [25]), and larger models like GPT-3 manifest broad commonsense reasoning capacity.
1 code implementation • 30 Dec 2022 • Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers, Sewoong Oh, Yejin Choi, Zaid Harchaoui
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
1 code implementation • 13 Sep 2022 • Jack Hessel, Ana Marasović, Jena D. Hwang, Lillian Lee, Jeff Da, Rowan Zellers, Robert Mankoff, Yejin Choi
Large neural networks can now generate jokes, but do they really "understand" humor?
no code implementations • 17 Jun 2022 • Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, Aniruddha Kembhavi
We propose Unified-IO, a model that performs a large variety of AI tasks spanning classical computer vision tasks, including pose estimation, object detection, depth estimation and image generation, vision-and-language tasks such as region captioning and referring expression, to natural language processing tasks such as question answering and paraphrasing.
Ranked #1 on Object Segmentation on GRIT
1 code implementation • 25 May 2022 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, JaeSung Park, Ximing Lu, Prithviraj Ammanabrolu, Rowan Zellers, Ronan Le Bras, Gunhee Kim, Yejin Choi
Large language models readily adapt to novel settings, even without task-specific training data.
1 code implementation • 10 Feb 2022 • Jack Hessel, Jena D. Hwang, Jae Sung Park, Rowan Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate Saenko, Yejin Choi
We present Sherlock, an annotated corpus of 103K images for testing machine capacity for abductive reasoning beyond literal image contents.
no code implementations • CVPR 2022 • Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya Kusupati, Jack Hessel, Ali Farhadi, Yejin Choi
Given a video, we replace snippets of text and audio with a MASK token; the model learns by choosing the correct masked-out snippet.
Ranked #6 on Action Classification on Kinetics-600 (using extra training data)
1 code implementation • NAACL 2022 • Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, Yejin Choi
To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction.
Ranked #1 on Text Generation on ROCStories
1 code implementation • NAACL 2022 • Yanpeng Zhao, Jack Hessel, Youngjae Yu, Ximing Lu, Rowan Zellers, Yejin Choi
In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2. 2\% R@1.
no code implementations • ACL 2021 • Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine Bosselut, Yejin Choi
Understanding manipulated media, from automatically generated {`}deepfakes{'} to manually edited ones, raises novel research challenges.
1 code implementation • NeurIPS 2021 • Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, Yejin Choi
As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future.
no code implementations • ACL 2021 • Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha Kembhavi, Ali Farhadi, Yejin Choi
We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language.
4 code implementations • NeurIPS 2021 • Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, Zaid Harchaoui
As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem.
no code implementations • 8 Dec 2020 • Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine Bosselut, Yejin Choi
The difference between this example, and harmful edits that spread disinformation, is one of intent.
no code implementations • NAACL 2021 • Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples.
no code implementations • NAACL 2021 • Gabriel Ilharco, Rowan Zellers, Ali Farhadi, Hannaneh Hajishirzi
The success of large-scale contextual language models has attracted great interest in probing what is encoded in their representations.
1 code implementation • NAACL 2021 • Rowan Zellers, Ari Holtzman, Elizabeth Clark, Lianhui Qin, Ali Farhadi, Yejin Choi
We propose TuringAdvice, a new challenge task and dataset for language understanding models.
1 code implementation • ICML 2020 • Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, Yejin Choi
Large neural models have demonstrated human-level performance on language and vision benchmarks, while their performance degrades considerably on adversarial or out-of-distribution samples.
2 code implementations • 26 Nov 2019 • Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, Yejin Choi
Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems.
Ranked #40 on Question Answering on PIQA
Natural Language Understanding Physical Commonsense Reasoning +1
4 code implementations • NeurIPS 2019 • Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi
We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data.
Ranked #2 on Fake News Detection on Grover-Mega
2 code implementations • ACL 2019 • Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi
In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset.
Ranked #71 on Sentence Completion on HellaSwag
4 code implementations • CVPR 2019 • Rowan Zellers, Yonatan Bisk, Ali Farhadi, Yejin Choi
While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world.
Multiple-choice Multiple Choice Question Answering (MCQA) +1
1 code implementation • EMNLP 2018 • Rowan Zellers, Yonatan Bisk, Roy Schwartz, Yejin Choi
Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine").
Ranked #4 on Common Sense Reasoning on SWAG
7 code implementations • CVPR 2018 • Rowan Zellers, Mark Yatskar, Sam Thomson, Yejin Choi
We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7. 1% relative gain.
Ranked #8 on Panoptic Scene Graph Generation on PSG Dataset
2 code implementations • EMNLP 2017 • Rowan Zellers, Yejin Choi
In this paper, we investigate large-scale zero-shot activity recognition by modeling the visual and linguistic attributes of action verbs.
5 code implementations • 20 Jun 2016 • Amir Zadeh, Rowan Zellers, Eli Pincus, Louis-Philippe Morency
This paper introduces to the scientific community the first opinion-level annotated corpus of sentiment and subjectivity analysis in online videos called Multimodal Opinion-level Sentiment Intensity dataset (MOSI).