Search Results for author: Ruixiang Zhang

Found 25 papers, 11 papers with code

TypeScore: A Text Fidelity Metric for Text-to-Image Generative Models

no code implementations2 Nov 2024 Georgia Gabriela Sampaio, Ruixiang Zhang, Shuangfei Zhai, Jiatao Gu, Josh Susskind, Navdeep Jaitly, Yizhe Zhang

In this work, we focus on the text rendering aspect of these models, which provides a lens for evaluating a generative model's fine-grained instruction-following capabilities.

Image Generation Instruction Following +1

Enhancing Fine-grained Object Detection in Aerial Images via Orthogonal Mapping

1 code implementation25 Jul 2024 Haoran Zhu, Yifan Zhou, Chang Xu, Ruixiang Zhang, Wen Yang

This letter introduces Orthogonal Mapping (OM), a simple yet effective method aimed at addressing the challenge of semantic confusion inherent in FGOD.

object-detection Object Detection In Aerial Images

dMel: Speech Tokenization made Simple

1 code implementation22 Jul 2024 He Bai, Tatiana Likhomanenko, Ruixiang Zhang, Zijin Gu, Zakaria Aldeneh, Navdeep Jaitly

Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data.

Decoder Language Modelling +4

Improving GFlowNets for Text-to-Image Diffusion Alignment

no code implementations2 Jun 2024 Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, Shuangfei Zhai

Diffusion models have become the de-facto approach for generating visual data, which are trained to match the distribution of the training dataset.

How Far Are We from Intelligent Visual Deductive Reasoning?

1 code implementation7 Mar 2024 Yizhe Zhang, He Bai, Ruixiang Zhang, Jiatao Gu, Shuangfei Zhai, Josh Susskind, Navdeep Jaitly

Vision-Language Models (VLMs) have recently demonstrated incredible strides on diverse vision language tasks.

In-Context Learning Visual Reasoning

Robust Tiny Object Detection in Aerial Images amidst Label Noise

1 code implementation16 Jan 2024 Haoran Zhu, Chang Xu, Wen Yang, Ruixiang Zhang, Yan Zhang, Gui-Song Xia

In this study, we address the intricate issue of tiny object detection under noisy label supervision.

Denoising Object +2

Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning

7 code implementations8 Aug 2022 Ting Chen, Ruixiang Zhang, Geoffrey Hinton

The main idea behind our approach is to first represent the discrete data as binary bits, and then train a continuous diffusion model to model these bits as real numbers which we call analog bits.

Image Captioning Image Generation

Learning Representation from Neural Fisher Kernel with Low-rank Approximation

no code implementations ICLR 2022 Ruixiang Zhang, Shuangfei Zhai, Etai Littwin, Josh Susskind

We show that the low-rank approximation of NFKs derived from unsupervised generative models and supervised learning models gives rise to high-quality compact representations of data, achieving competitive results on a variety of machine learning tasks.

A Dot Product Attention Free Transformer

no code implementations29 Sep 2021 Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, Joshua M. Susskind

We introduce Dot Product Attention Free Transformer (DAFT), an efficient variant of Transformers \citep{transformer} that eliminates the query-key dot product in self attention.

Image Classification Language Modelling

An Attention Free Transformer

7 code implementations28 May 2021 Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, Josh Susskind

We introduce Attention Free Transformer (AFT), an efficient variant of Transformers that eliminates the need for dot product self attention.

Position

A nonabelian Brunn-Minkowski inequality

no code implementations19 Jan 2021 Yifan Jing, Chieu-Minh Tran, Ruixiang Zhang

Henstock and Macbeath asked in 1953 whether the Brunn-Minkowski inequality can be generalized to nonabelian locally compact groups; questions along the same line were also asked by Hrushovski, McCrudden, and Tao.

Group Theory Classical Analysis and ODEs Combinatorics Functional Analysis Metric Geometry 22D05, 43A05, 49Q20, 60B15

Tiny Object Detection in Aerial Images

1 code implementation International Conference on Pattern Recognition (ICPR) 2021 Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset.

Object object-detection +1

Improving unsupervised anomaly localization by applying multi-scale memories to autoencoders

no code implementations21 Dec 2020 Yifei Yang, Shibing Xiang, Ruixiang Zhang

Autoencoder and its variants have been widely applicated in anomaly detection. The previous work memory-augmented deep autoencoder proposed memorizing normality to detect anomaly, however it neglects the feature discrepancy between different resolution scales, therefore we introduce multi-scale memories to record scale-specific features and multi-scale attention fuser between the encoding and decoding module of the autoencoder for anomaly detection, namely MMAE. MMAE updates slots at corresponding resolution scale as prototype features during unsupervised learning.

Anomaly Detection Anomaly Localization

Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective

no code implementations ICML 2020 Ruixiang Zhang, Masanori Koyama, katsuhiko Ishiguro

Learning controllable and generalizable representation of multivariate data with desired structural properties remains a fundamental problem in machine learning.

Fairness Inductive Bias

Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling

3 code implementations NeurIPS 2020 Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio

To make that practical, we show that sampling from this modified density can be achieved by sampling in latent space according to an energy-based model induced by the sum of the latent prior log-density and the discriminator output score.

Image Generation

Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models

no code implementations18 Nov 2019 Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, Yoshua Bengio

We test the verifier network on out-of-distribution detection and adversarial example detection problems, as well as anomaly detection problems in structured prediction tasks such as image caption generation.

Anomaly Detection Autonomous Driving +5

Perceptual Generative Autoencoders

2 code implementations ICML 2020 Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull

We therefore propose to map both the generated and target distributions to a latent space using the encoder of a standard autoencoder, and train the generator (or decoder) to match the target distribution in the latent space.

Decoder

Understanding Hidden Memories of Recurrent Neural Networks

1 code implementation30 Oct 2017 Yao Ming, Shaozu Cao, Ruixiang Zhang, Zhen Li, Yuanzhe Chen, Yangqiu Song, Huamin Qu

We propose a technique to explain the function of individual hidden state units based on their expected response to input texts.

Clustering Sentence

Maximum-Likelihood Augmented Discrete Generative Adversarial Networks

no code implementations26 Feb 2017 Tong Che, Yan-ran Li, Ruixiang Zhang, R. Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio

Despite the successes in capturing continuous distributions, the application of generative adversarial networks (GANs) to discrete settings, like natural language tasks, is rather restricted.

Cannot find the paper you are looking for? You can Submit a new open access paper.