1 code implementation • 16 Oct 2024 • Jintao Liu, Ruixue Ding, Linhao Zhang, Pengjun Xie, Fie Huang
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations.
1 code implementation • 29 Feb 2024 • Zhikun Xu, Yinghui Li, Ruixue Ding, Xinyu Wang, Boli Chen, Yong Jiang, Hai-Tao Zheng, Wenlian Lu, Pengjun Xie, Fei Huang
To promote the improvement of Chinese LLMs' ability to answer dynamic questions, in this paper, we introduce CDQA, a Chinese Dynamic QA benchmark containing question-answer pairs related to the latest news on the Chinese Internet.
1 code implementation • 4 Sep 2023 • Yong Cao, Ruixue Ding, Boli Chen, Xianzhi Li, Min Chen, Daniel Hershcovich, Pengjun Xie, Fei Huang
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates, which is crucial for location-related services such as navigation maps.
no code implementations • 11 May 2023 • Dongyang Li, Ruixue Ding, Qiang Zhang, Zheng Li, Boli Chen, Pengjun Xie, Yao Xu, Xin Li, Ning Guo, Fei Huang, Xiaofeng He
With a fast developing pace of geographic applications, automatable and intelligent models are essential to be designed to handle the large volume of information.
1 code implementation • 11 Jan 2023 • Ruixue Ding, Boli Chen, Pengjun Xie, Fei Huang, Xin Li, Qiang Zhang, Yao Xu
Single-modal PTMs can barely make use of the important GC and therefore have limited performance.
2 code implementations • 19 Oct 2022 • Hongqiu Wu, Ruixue Ding, Hai Zhao, Boli Chen, Pengjun Xie, Fei Huang, Min Zhang
Multiple pre-training objectives fill the vacancy of the understanding capability of single-objective language modeling, which serves the ultimate purpose of pre-trained language models (PrLMs), generalizing well on a mass of scenarios.
1 code implementation • 25 Jun 2022 • Hongqiu Wu, Ruixue Ding, Hai Zhao, Pengjun Xie, Fei Huang, Min Zhang
Deep neural models (e. g. Transformer) naturally learn spurious features, which create a ``shortcut'' between the labels and inputs, thus impairing the generalization and robustness.
Ranked #1 on Machine Reading Comprehension on DREAM
Machine Reading Comprehension Named Entity Recognition (NER) +4
1 code implementation • ACL 2019 • Ruixue Ding, Pengjun Xie, Xiaoyan Zhang, Wei Lu, Linlin Li, Luo Si
Gazetteers were shown to be useful resources for named entity recognition (NER).
no code implementations • NAACL 2019 • Zhanming Jie, Pengjun Xie, Wei Lu, Ruixue Ding, Linlin Li
Supervised approaches to named entity recognition (NER) are largely developed based on the assumption that the training data is fully annotated with named entity information.