no code implementations • Findings (ACL) 2022 • Zihan Wang, Jiuxiang Gu, Jason Kuen, Handong Zhao, Vlad Morariu, Ruiyi Zhang, Ani Nenkova, Tong Sun, Jingbo Shang
We present a comprehensive study of sparse attention patterns in Transformer models.
no code implementations • ICML 2020 • Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, Ole J. Mengshoel
We experiment with three structured bandit problems: cascading bandits, online learning to rank in the position-based model, and rank-1 bandits.
no code implementations • ACL 2022 • Rui Wang, Tong Yu, Handong Zhao, Sungchul Kim, Subrata Mitra, Ruiyi Zhang, Ricardo Henao
In this work, we study a more challenging but practical problem, i. e., few-shot class-incremental learning for NER, where an NER model is trained with only few labeled samples of the new classes, without forgetting knowledge of the old ones.
class-incremental learning
Few-Shot Class-Incremental Learning
+4
1 code implementation • 2 Sep 2023 • Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, Nesreen K. Ahmed
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere.
no code implementations • 22 Aug 2023 • Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu, Ruiyi Zhang, Tyler Derr
Concurrently, the LM-guided traverser acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality.
1 code implementation • ICCV 2023 • Yicong Hong, Yang Zhou, Ruiyi Zhang, Franck Dernoncourt, Trung Bui, Stephen Gould, Hao Tan
Being able to perceive the semantics and the spatial structure of the environment is essential for visual navigation of a household robot.
1 code implementation • 29 Jun 2023 • Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, Tong Sun
Instruction tuning unlocks the superior capability of Large Language Models (LLM) to interact with humans.
no code implementations • 8 Jun 2023 • Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li, Ricardo Henao
With this framework, we develop two novel mutual information based loss functions, to (i) discover proper prompt initialization for the downstream tasks and learn sufficient task-relevant information from prompt tokens and (ii) encourage the output representation from the pretrained language model to be more aware of the task-relevant information captured in the learnt prompt.
1 code implementation • 31 May 2023 • Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang Xu, Tong Sun, Changyou Chen
Remarkably, by incorporating conditional information from the powerful CLIP model, our method can boost the current SOTA accuracy by 10-20 absolute points in many cases.
Ranked #1 on
Image Classification
on Food-101N
1 code implementation • 23 May 2023 • Yufan Zhou, Ruiyi Zhang, Tong Sun, Jinhui Xu
However, generating images of novel concept provided by the user input image is still a challenging task.
no code implementations • 20 May 2023 • Kaige Xie, Tong Yu, Haoliang Wang, Junda Wu, Handong Zhao, Ruiyi Zhang, Kanak Mahadik, Ani Nenkova, Mark Riedl
In this paper, we focus on improving the prompt transfer from dialogue state tracking to dialogue summarization and propose Skeleton-Assisted Prompt Transfer (SAPT), which leverages skeleton generation as extra supervision that functions as a medium connecting the distinct source and target task and resulting in the model's better consumption of dialogue state information.
1 code implementation • 18 May 2023 • Youwei Liang, Ruiyi Zhang, Li Zhang, Pengtao Xie
The DrugChat system consists of a graph neural network (GNN), a large language model (LLM), and an adaptor.
1 code implementation • 9 May 2023 • Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, Yiran Chen
This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.
1 code implementation • 19 Oct 2022 • Hongxin Zhang, Yanzhe Zhang, Ruiyi Zhang, Diyi Yang
Demonstration-based learning has shown great potential in stimulating pretrained language models' ability under limited data scenario.
no code implementations • 18 Jul 2022 • Ping Yu, Wei Wang, Chunyuan Li, Ruiyi Zhang, Zhanpeng Jin, Changyou Chen
Significantly, it can even outperform the time- and resource-consuming fine-tuning method on sentiment classification tasks.
no code implementations • 26 May 2022 • Shijing Si, Jianzong Wang, Ruiyi Zhang, Qinliang Su, Jing Xiao
Non-negative matrix factorization (NMF) based topic modeling is widely used in natural language processing (NLP) to uncover hidden topics of short text documents.
no code implementations • CVPR 2022 • Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun
One of the major challenges in training text-to-image generation models is the need of a large number of high-quality text-image pairs.
2 code implementations • 27 Nov 2021 • Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun
One of the major challenges in training text-to-image generation models is the need of a large number of high-quality image-text pairs.
Ranked #2 on
Text-to-Image Generation
on Multi-Modal-CelebA-HQ
1 code implementation • EMNLP 2021 • Zequn Liu, Shukai Wang, Yiyang Gu, Ruiyi Zhang, Ming Zhang, Sheng Wang
Unfortunately, the lack of large-scale terminology definition dataset hinders the process toward definition generation.
1 code implementation • ICLR 2021 • Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, Lawrence Carin
Voice style transfer, also called voice conversion, seeks to modify one speaker's voice to generate speech as if it came from another (target) speaker.
no code implementations • 2 Jan 2021 • Ping Yu, Ruiyi Zhang, Yang Zhao, Yizhe Zhang, Chunyuan Li, Changyou Chen
Data augmentation has been widely used to improve deep neural networks in many research fields, such as computer vision.
no code implementations • 2 Jan 2021 • Yehua Wei, Lei Zhang, Ruiyi Zhang, Shijing Si, Hao Zhang, Lawrence Carin
Flexibility design problems are a class of problems that appear in strategic decision-making across industries, where the objective is to design a ($e. g.$, manufacturing) network that affords flexibility and adaptivity.
no code implementations • Findings of the Association for Computational Linguistics 2020 • Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai, Lawrence Carin
In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences.
no code implementations • EMNLP 2020 • Guoyin Wang, Chunyuan Li, Jianqiao Li, Hao Fu, Yuh-Chen Lin, Liqun Chen, Yizhe Zhang, Chenyang Tao, Ruiyi Zhang, Wenlin Wang, Dinghan Shen, Qian Yang, Lawrence Carin
An extension is further proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
no code implementations • EMNLP 2020 • Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Changwei Hu, Fei Tan, Ruiyi Zhang, Yifan Hu, Changyou Chen
The neural attention mechanism plays an important role in many natural language processing applications.
no code implementations • 15 Sep 2020 • Xinyuan Zhang, Ruiyi Zhang, Manzil Zaheer, Amr Ahmed
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstractive dialogue summarization a challenging task.
no code implementations • 9 Jul 2020 • Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, Ole J. Mengshoel
We propose a novel framework for structured bandits, which we call an influence diagram bandit.
no code implementations • 24 May 2020 • Zequn Liu, Ruiyi Zhang, Yiping Song, Ming Zhang
Model-Agnostic Meta-Learning (MAML), a model-agnostic meta-learning method, is successfully employed in NLP applications including few-shot text classification and multi-domain low-resource language generation.
no code implementations • 4 May 2020 • Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen, Lawrence Carin
Text-based interactive recommendation provides richer user feedback and has demonstrated advantages over traditional interactive recommender systems.
no code implementations • ACL 2020 • Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Dinghan Shen, Guoyin Wang, Zheng Wen, Lawrence Carin
Auto-regressive text generation models usually focus on local fluency, and may cause inconsistent semantic meaning in long text generation.
1 code implementation • ICLR 2020 • Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang, Changyou Chen
Specifically, we propose a Bayesian meta sampling framework consisting of two main components: a meta sampler and a sample adapter.
1 code implementation • ICLR 2020 • Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans
An important problem that arises in reinforcement learning and Monte Carlo methods is estimating quantities defined by the stationary distribution of a Markov chain.
no code implementations • 20 Jan 2020 • Ruiyi Zhang, Changyou Chen, Zhe Gan, Zheng Wen, Wenlin Wang, Lawrence Carin
Reinforcement learning (RL) has been widely studied for improving sequence-generation models.
1 code implementation • AAAI 2019 • Zhenyi Wang, Ping Yu, Yang Zhao, Ruiyi Zhang, Yufan Zhou, Junsong Yuan, Changyou Chen
In this paper, we focus on skeleton-based action generation and propose to model smooth and diverse transitions on a latent space of action sequences with much lower dimensionality.
Ranked #4 on
Human action generation
on NTU RGB+D 2D
no code implementations • NeurIPS 2019 • Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen
Text-based interactive recommendation provides richer user preferences and has demonstrated advantages over traditional interactive recommender systems.
no code implementations • ICLR 2020 • Wenlin Wang, Hongteng Xu, Ruiyi Zhang, Wenqi Wang, Piyush Rai, Lawrence Carin
To address this, we propose a learning framework that improves collaborative filtering with a synthetic feedback loop (CF-SFL) to simulate the user feedback.
1 code implementation • NeurIPS 2019 • Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin
This paper considers a novel variational formulation of network embeddings, with special focus on textual networks.
no code implementations • 7 Jun 2019 • Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul Kim, Scott Cohen, Tong Yu, Ryan Rossi, Razvan Bunescu
In this work, we investigate the problem of figure captioning where the goal is to automatically generate a natural language description of the figure.
no code implementations • NAACL 2019 • Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen, Changyou Chen, Lawrence Carin
We propose a topic-guided variational auto-encoder (TGVAE) model for text generation.
no code implementations • 17 Mar 2019 • Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen, Changyou Chen, Lawrence Carin
We propose a topic-guided variational autoencoder (TGVAE) model for text generation.
no code implementations • 19 Feb 2019 • Ruiyi Zhang, Zheng Wen, Changyou Chen, Lawrence Carin
Thompson sampling (TS) is a class of algorithms for sequential decision-making, which requires maintaining a posterior distribution over a model.
no code implementations • ICLR 2019 • Liqun Chen, Yizhe Zhang, Ruiyi Zhang, Chenyang Tao, Zhe Gan, Haichao Zhang, Bai Li, Dinghan Shen, Changyou Chen, Lawrence Carin
Sequence-to-sequence models are commonly trained via maximum likelihood estimation (MLE).
no code implementations • 2 Nov 2018 • Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Liqun Chen, Dinghan Shen, Guoyin Wang, Lawrence Carin
Sequence generation with reinforcement learning (RL) has received significant attention recently.
no code implementations • 27 Sep 2018 • Jianyi Zhang, Ruiyi Zhang, Changyou Chen
With such theoretical guarantees, SPOS can be safely and effectively applied on both Bayesian DL and deep RL tasks.
no code implementations • 5 Sep 2018 • Jianyi Zhang, Ruiyi Zhang, Lawrence Carin, Changyou Chen
Particle-optimization-based sampling (POS) is a recently developed effective sampling technique that interactively updates a set of particles.
no code implementations • ICML 2018 • Ruiyi Zhang, Changyou Chen, Chunyuan Li, Lawrence Carin
Policy optimization is a core component of reinforcement learning (RL), and most existing RL methods directly optimize parameters of a policy based on maximizing the expected total reward, or its surrogate.
1 code implementation • 4 Jul 2018 • Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu, Lawrence Carin
Particle-based variational inference methods (ParVIs) have gained attention in the Bayesian inference literature, for their capacity to yield flexible and accurate approximations.
no code implementations • ICML 2018 • Liqun Chen, Chenyang Tao, Ruiyi Zhang, Ricardo Henao, Lawrence Carin Duke
Recent advances on the scalability and flexibility of variational inference have made it successful at unravelling hidden patterns in complex data.
no code implementations • 29 May 2018 • Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, Liqun Chen
There has been recent interest in developing scalable Bayesian sampling methods such as stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD) for big-data analysis.
1 code implementation • 30 Dec 2017 • Ruiyi Zhang, Chunyuan Li, Changyou Chen, Lawrence Carin
Learning probability distributions on the weights of neural networks (NNs) has recently proven beneficial in many applications.
no code implementations • 29 Nov 2017 • Changyou Chen, Ruiyi Zhang
Stochastic gradient Markov chain Monte Carlo (SG-MCMC) has been increasingly popular in Bayesian learning due to its ability to deal with large data.